Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation

被引:0
作者
Schneider, Thomas [1 ]
Bedrikow, Alexandre Beiderwellen [1 ]
Stahl, Karsten [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
关键词
BEHAVIOR; TEMPERATURE;
D O I
10.1186/s40323-024-00268-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This research paper presents a comprehensive methodology for analyzing wet clutches, focusing on their intricate thermomechanical behavior. The study combines advanced encoding techniques, such as Principal Component Analysis (PCA), with metamodeling, to efficiently predict pressure and temperature distributions on friction surfaces. By parametrically varying input parameters and utilizing Finite Element Method (FEM) simulations, we generate a dataset comprising 200 simulations, divided into training and testing sets. Our findings indicate that PCA encoding effectively reduces data dimensionality while preserving essential information. Notably, the study reveals that only a few PCA components are required for accurate encoding: two components for temperature distribution and pressure, and three components for heat flux density. We compare various metamodeling techniques, including Linear Regression, Decision Trees, Random Forest, Support Vector Regression, Gaussian Processes, and Neural Networks. The results underscore the varying performance of these techniques, with Random Forest excelling in mechanical metamodeling and Neural Networks demonstrating superiority in thermal metamodeling.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Numerical investigation of pile foundation systems employing an enhanced embedded finite element
    Granitzer, Andreas-Nizar
    Felic, Haris
    Leo, Johannes
    Stastny, Alexander
    Tschuchnigg, Franz
    FRONTIERS IN BUILT ENVIRONMENT, 2024, 10
  • [42] Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis
    Zhao, Yalei
    Yan, Hui
    Wang, Yiming
    Jiang, Tianyi
    Jiang, Hongyuan
    MATERIALS, 2021, 14 (18)
  • [43] Thermomechanical investigation of the continuous casting of ingots using the element-based Finite-Volume Method
    Pimenta, Paulo Vicente de Cassia Lima
    Rocha, Jose Rene de Sousa
    Marcondes, Francisco
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2022, 96
  • [44] Combining Finite Element and Machine Learning Methods to Predict Structures of Architectured Interlocking Ceramics
    Ravanbakhsh, Hossein
    Behbahani, Razyeh
    Sarvestani, Hamidreza Yazdani
    Kiyani, Elham
    Rahmat, Meysam
    Karttunen, Mikko
    Ashrafi, Behnam
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (10)
  • [45] Design of double layer protective coatings: Finite element modeling and machine learning approximations
    Kolesnikov, V. I.
    Pashkov, D. M.
    Belyak, O. A.
    Guda, A. A.
    Danilchenko, S. A.
    Novikov, E. S.
    Kudryakov, O. V.
    Guda, S. A.
    Soldatov, A. V.
    Kolesnikov, I. V.
    ACTA ASTRONAUTICA, 2023, 204 : 869 - 877
  • [46] Simulation of freezing step in vial lyophilization using finite element method
    Muzzio, Cristian R.
    Dini, Nicolas G.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (11) : 2274 - 2283
  • [47] Prediction of spot weld fatigue life using finite element approach
    Bhuvaneswaran, S.
    Padmanaban, R.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 9875 - 9881
  • [48] Finite Element Simulation of Solid-Liquid Interdiffusion Bonding Process: Understanding Process-Dependent Thermomechanical Stress
    Tiwary, Nikhilendu
    Vuorinen, Vesa
    Ross, Glenn
    Paulasto-Krockel, Mervi
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2022, 12 (05): : 847 - 856
  • [49] Simulation of Natural Frequencies of Orange Fruit Using Finite Element Method
    Kahrizi, V.
    Ahmadi, E.
    Shoshtari, A. R.
    JOURNAL OF AGRICULTURAL MACHINERY, 2024, 14 (02) : 163 - 176
  • [50] Granite porosity prediction under varied thermal conditions using machine learning models
    Dwivedi, Rishabh
    Prasad, Balbir
    Gautam, Pk
    Garg, Peeyush
    Agarwal, Siddhartha
    Singh, Kh
    Singh, Tn
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)