An efficient deep learning architecture for effective fire detection in smart surveillance

被引:12
|
作者
Yar, Hikmat [1 ]
Khan, Zulfiqar Ahmad [1 ]
Rida, Imad [2 ]
Ullah, Waseem [1 ]
Kim, Min Je [1 ]
Baik, Sung Wook [1 ]
机构
[1] Sejong Univ, Seoul 143747, South Korea
[2] Univ Technol Compiegne, Ctr Rech Royallieu, Lab Biomecan & Bioingn UMR7338, Compiegne, France
基金
新加坡国家研究基金会;
关键词
Aerial view; Attention mechanism; Convolutional neural network; Environment monitoring; Fire detection; Remote sensing; CONVOLUTIONAL NEURAL-NETWORKS; COLOR; SHAPE;
D O I
10.1016/j.imavis.2024.104989
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The threat of fire is pervasive, poses significant risks to the environment, and may include potential fatalities, property devastation, and socioeconomic disruption. Successfully mitigating these risks relies on the prompt identification of fires, a process in which soft computing methodologies play a pivotal role. Although, these fire detection methodologies neglected to explore the relationships among fire-indicative features, which are important to enable a model to learn more representative and robust features in remote sensing scenarios. In the context of small fire detection from aerial view using satellite imagery or unmanned arial vehicle (UAVs) presents challenges to capture rich spatial detail, hinder the model ability for accurate fire scene classification. Furthermore, it is significant to manage model complexity effectively to facilitate deployment on UAVs for fast and accurate responses in an emergency situation. To cope with these challenges, we propose an advanced model integrated a modified soft attention mechanism (MSAM) and a 3D convolution operation with a MobileNet architecture to overcome obstacles related to optimising features and controlling model complexity. The MSAM enabling the model to selectively emphasise essential features during the training process which acts as a selective filter. This adaptive attention mechanism enhances sensitivity and allowing the model to prioritise relevant patterns for accurate fire detection. Concurrently, the integration of a 3D convolutional operation extends the model spatial awareness, to capture intricate details across multiple scales, and particularly in small regions observed from aerial viewpoints. Benchmark evaluations of the proposed model over the FD, DFAN, and ADSF datasets reveal superior performance with enhanced accuracy (ACR) compared to existing methods. Our model surpassed the state-of-the-art models with an average ACR improvement of 0.54%, 2.64%, and 1.20% on the FD, ADSF, and DFAN datasets, respectively. Furthermore, the use of an explainable artificial intelligence (XAI) technique enhances the validation of the model visual emphasis on critical regions of the image, providing valuable insights into its decision-making process.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency
    Kang, Yoojin
    Jang, Eunna
    Im, Jungho
    Kwon, Chungeun
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2019 - 2035
  • [32] Beyond boundaries: Advancements in fire and smoke detection for indoor and outdoor surveillance feeds
    Khan, Rafaqat Alam
    Bajwa, Usama Ijaz
    Raza, Rana Hammad
    Anwar, Muhammad Waqas
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [33] Smart Fire Detection System with Early Notifications Using Machine Learning
    Sultan Mahmud M.
    Islam M.S.
    Rahman M.A.
    Sultan Mahmud, Mohammad (m.smahmud@yahoo.com), 1600, World Scientific (16):
  • [34] Smart Surveillance System for Detection of Suspicious Behaviour Using Machine Learning
    Joshi, Aastha
    Jagdale, Ninad
    Gandhi, Rajvi
    Chaudhari, Sheetal
    INTELLIGENT COMPUTING, INFORMATION AND CONTROL SYSTEMS, ICICCS 2019, 2020, 1039 : 239 - 248
  • [35] A real-time forest fire and smoke detection system using deep learning
    Mohammed, Raghad K.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2053 - 2063
  • [36] FireWarn: Fire Hazards Detection Using Deep Learning Models
    Hogan, Isaac
    Qiao, Donghao
    Luo, Ruikang
    Moattari, Mojtaba
    Carthy, Austin
    Zulkernine, Farhana
    Rivest, Francois
    Breton, Melanie
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 1 - 10
  • [37] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195
  • [38] Fire Detection in Ship Engine Rooms Based on Deep Learning
    Zhu, Jinting
    Zhang, Jundong
    Wang, Yongkang
    Ge, Yuequn
    Zhang, Ziwei
    Zhang, Shihan
    SENSORS, 2023, 23 (14)
  • [39] Fire Sensor and Surveillance Camera-Based GTCNN for Fire Detection System
    Sridhar, P.
    Thangavel, Senthil Kumar
    Parameswaran, Latha
    Oruganti, Venkata Ramana Murthy
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 7626 - 7633
  • [40] Algorithm for Fire Detection using a Camera Surveillance System
    Nguyen Manh Dung
    Ro, Soonghwan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING (ICIGP 2018), 2018, : 38 - 42