Properties, estimation, and applications of the extended log-logistic distribution

被引:1
作者
Kariuki, Veronica [1 ]
Wanjoya, Anthony [2 ]
Ngesa, Oscar [3 ]
Alharthi, Amirah Saeed [4 ]
Aljohani, Hassan M. [4 ]
Afify, Ahmed Z. [5 ]
机构
[1] Pan African Inst Basic Sci Technol & Innovat, Dept Math, Naiobi 00200, Kenya
[2] Jomo Kenyatta Univ Agr & Technol, Dept Stat & Actuarial Sci, Nairobi 00200, Kenya
[3] Taita Taveta Univ, Dept Math Stat & Phys Sci, Voi 80300, Kenya
[4] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[5] Benha Univ, Dept Stat Math & Insurance, Banha 13511, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Log-logistic distribution; Alpha-power family; Survival data; Maximum likelihood estimation; Order statistics; WEIBULL DISTRIBUTION PROPERTIES; FAMILY; REGRESSION; EXTENSION;
D O I
10.1038/s41598-024-68843-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the exponentiated alpha-power log-logistic (EAPLL) distribution, which extends the log-logistic distribution. The EAPLL distribution emphasizes its suitability for survival data modeling by providing analytical simplicity and accommodating both monotone and non-monotone failure rates. We derive some of its mathematical properties and test eight estimation methods using an extensive simulation study. To determine the best estimation approach, we rank mean estimates, mean square errors, and average absolute biases on a partial and overall ranking. Furthermore, we use the EAPLL distribution to examine three real-life survival data sets, demonstrating its superior performance over competing log-logistic distributions. This study adds vital insights to survival analysis methodology and provides a solid framework for modeling various survival data scenarios.
引用
收藏
页数:34
相关论文
共 50 条
  • [22] A new compound class of log-logistic Weibull-Poisson distribution: model, properties and applications
    Oluyede, Broderick O.
    Warahena-Liyanage, Gayan
    Pararai, Mavis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1363 - 1391
  • [23] The Odd Log-Logistic Exponentiated Weibull Distribution: Regression Modeling, Properties, and Applications
    Afify, Ahmed Z.
    Alizadeh, Morad
    Zayed, Mohamed
    Ramires, Thiago G.
    Louzada, Francisco
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2273 - 2288
  • [24] The New Extension of Odd Log-Logistic Chen Distribution: Mathematical Properties and Applications
    Zamani, Zohre
    Afshari, Mahmoud
    Karamikabir, Hamid
    KhanAhmadi, Maryam
    Alizadeh, Morad
    THAILAND STATISTICIAN, 2021, 19 (02): : 317 - 338
  • [25] The Odd Log-Logistic Poisson Inverse Rayleigh Distribution: Statistical Properties and Applications
    Elbatal, I
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (04) : 775 - 787
  • [26] A new generalized log-logistic Erlang truncated exponential distribution with applications
    Oluyede, Broderick
    Jimoh, Hameed A.
    Wanduku, Divine
    Makubate, Boikanyo
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (02) : 293 - 349
  • [27] Reduced bias estimation of the shape parameter of the log-logistic distribution
    Caeiro, Frederico
    Mateus, Ayana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [28] Bayesian and Classical Inference for the Generalized Log-Logistic Distribution with Applications to Survival Data
    Muse, Abdisalam Hassan
    Mwalili, Samuel
    Ngesa, Oscar
    Almalki, Saad J.
    Abd-Elmougod, Gamal A.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [29] LOG-LOGISTIC WEIBULL-GEOMETRIC DISTRIBUTION WITH APPLICATION TO LIFETIME DATA
    Khan, Adil H.
    Jan, T. R.
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2019, 12 (01): : 187 - 204
  • [30] A new three-parameter extension of the log-logistic distribution with applications to survival data
    Shakhatreh, Mohammed K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5205 - 5226