Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials

被引:0
作者
Zhang, Hao [1 ,2 ]
Wang, Li [1 ]
He, Xiangming [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing, Peoples R China
[2] Res Inst Chem Def, Beijing, Peoples R China
来源
BATTERY ENERGY | 2022年 / 1卷 / 01期
基金
中国国家自然科学基金;
关键词
electrolyte; LiNixMnyCo1-x-yO2; cathode; lithium-ion batteries; thermal runaway; ACCELERATING RATE; BEHAVIOR; CELLS; STATE; ELECTROLYTE;
D O I
10.1002/BTE2.20210011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Safety failure, especially the "thermal runaway (TR)," result in safety anxiety and hinder the fast development of LIBs. Understanding the process and mechanism are the premise of mitigation TR. In this perspective, we briefly review the progress of the TR study of LIBs and then discuss the recent works on the mechanism study of LIB with different cathodes. We present our latest data of LiNixMnyCo1-x-yO2 cathode TR study and rethink the role of liquid electrolytes in TR. At last, we discuss the current-best known knowledge of investigating the TR mechanism and briefly summarize the strategies for TR alleviation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [22] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [23] Study on the Thermal Runaway of a Sport Camera Lithium-Ion Battery Associated with Instrumental Analysis of Its Components
    Li, Rui
    Lei, Wengang
    Gao, Yuchong
    Zhuang, Hanzhao
    Wang, Lei
    Huang, Zhikun
    Huang, Jiale
    Duh, Yih-Shing
    ACS CHEMICAL HEALTH & SAFETY, 2023, 30 (06) : 408 - 419
  • [24] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [25] Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
    Yang, Xinwei
    Wang, Hewu
    Li, Minghai
    Li, Yalun
    Li, Cheng
    Zhang, Yajun
    Chen, Siqi
    Shen, Hengjie
    Qian, Feng
    Feng, Xuning
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (11):
  • [26] The critical characteristics and transition process of lithium-ion battery thermal runaway
    Huang, Peifeng
    Yao, Caixia
    Mao, Binbin
    Wang, Qingsong
    Sun, Jinhua
    Bai, Zhonghao
    ENERGY, 2020, 213
  • [27] Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents
    Li, Lun
    Ju, Xiaoyu
    Zhou, Xiaodong
    Peng, Yang
    Zhou, Zhizuan
    Cao, Bei
    Yang, Lizhong
    MATERIALS, 2021, 14 (16)
  • [28] Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery
    Liu, Jialong
    Wang, Zhirong
    Bai, Jinlong
    Gao, Tianfeng
    Mao, Ning
    APPLIED THERMAL ENGINEERING, 2022, 212
  • [29] A comprehensive study on heat transfer mechanism and thermal runaway suppression of the lithium-ion battery
    Sun, Tao
    Yan, Yulong
    Wang, Xinhua
    Rasool, Ghulam
    Zhang, Kai
    Li, Tie
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 245
  • [30] Thermal Runaway Mechanism in Ni-Rich Cathode Full Cells of Lithium-Ion Batteries: The Role of Multidirectional Crosstalk
    Jo, Sugeun
    Seo, Sungjae
    Kang, Song Kyu
    Na, Ikcheon
    Kunze, Sebastian
    Song, Munsoo
    San, Hwang
    Woo, Sung Pil
    Kim, Sohee
    Kim, Won Bae
    Lim, Jongwoo
    ADVANCED MATERIALS, 2024, 36 (31)