A DISCRETE MATHEMATICAL MODEL SEIR WITH THE EVOLUTION OF THE REGIONS

被引:0
作者
Khaloufi, Issam [1 ]
Benfatah, Youssef [1 ]
Moutamanni, Hajar [1 ]
Boutayeb, Hamza [1 ]
Rachik, Mostafa [1 ]
机构
[1] Hassan II Univ, Fac Sci Ben MSik, Dept Math & Comp Sci, Lab Anal Modeling & Simulat, BP 7955, Casablanca, Sidi Othman, Morocco
关键词
mathematical model; discrete-time systems; optimal control; contagious virus; SEIR; Pontryagin maximum; EPIDEMIC; SPREAD; TRANSMISSION; DYNAMICS; TRAVEL; SARS;
D O I
10.28919/cmbn/7674
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we provide a discrete mathematical SEIR model that depicts the evolution of an infectious disease while introducing the novel idea of taking regional infection spread into account. To reduce the disease's ability to spread among people and places, we suggest three control measures. The optimal controls are defined using the Pontryagin maximum principle, and the optimality system is solved using an iterative method. Finally, MATLAB-based numerical simulations are performed to check the results of the theoretical analysis. Keywords: mathematical model; discrete-time systems; optimal control; contagious virus; SEIR; Pontryagin maximum.
引用
收藏
页数:27
相关论文
共 50 条
[41]   Infection vulnerability stratification risk modelling of COVID-19 data: a deterministic SEIR epidemic model analysis [J].
Kumar, Ajay ;
Choi, Tsan-Ming ;
Wamba, Samuel Fosso ;
Gupta, Shivam ;
Tan, Kim Hua .
ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) :1177-1203
[42]   A multigroup SEIR epidemic model with age-dependent latency and relapse [J].
Liu, Lili ;
Feng, Xiaomei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6814-6833
[43]   A DISCRETE MATHEMATICAL MODELING FOR DRINKING ALCOHOL MODEL RESULTING IN ROAD ACCIDENTS AND VIOLENCE: AN OPTIMAL CONTROL APPROACH [J].
El Youssoufi, Lahcen ;
Khajji, Bouchaib ;
Balatif, Omar ;
Rachik, Mostafa .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
[44]   Mathematical analysis of a tuberculosis model with imperfect vaccine [J].
Egonmwan, A. O. ;
Okuonghae, D. .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (07)
[45]   A mathematical model to optimize the available control measures of [J].
Baba, Isa Abdullahi ;
Nasidi, Bashir Ahmad ;
Baleanu, Dumitru ;
Saadi, Sultan Hamed .
ECOLOGICAL COMPLEXITY, 2021, 46
[46]   A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs [J].
Hughes, Jack M. ;
Eberl, Hermann J. ;
Sonner, Stefanie .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) :6582-6619
[47]   A mathematical model for the conservation of forestry resources with two discrete time delays [J].
Lata K. ;
Misra A.K. ;
Upadhyay R.K. .
Modeling Earth Systems and Environment, 2017, 3 (3) :1011-1027
[48]   Mathematical model of joint optimization of programmed and perturbed motions in discrete systems [J].
Kotina, Elena D. ;
Ovsyannikov, Dmitri A. .
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2021, 17 (02) :213-224
[49]   A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay [J].
Radha, M. ;
Balamuralitharan, S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[50]   AN SEIR EPIDEMIC MODEL WITH TWO INFECTIOUS PATHWAYS [J].
Sangotola, A. O. ;
Akinwumi, O. A. ;
Nuga, O. A. ;
Adebayo, E. A. ;
Adeniji, A. E. ;
Adigun, A. J. .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,