Computational design of mechanical metamaterials

被引:10
作者
Bonfanti, Silvia [1 ,2 ]
Hiemer, Stefan [1 ,3 ,4 ]
Zulkarnain, Raja [1 ]
Guerra, Roberto [1 ]
Zaiser, Michael [3 ]
Zapperi, Stefano [1 ,4 ]
机构
[1] Univ Milan, Ctr Complex & Biosyst, Dept Phys Aldo Pontremoli, Milan, Italy
[2] Natl Ctr Nucl Res, NOMATEN Ctr Excellence, Otwock, Poland
[3] Friedrich Alexander Univ Erlangen Nuremberg, Inst Mat Simulat, Dept Mat Sci & Engn, Furth, Germany
[4] CNR, Ist Chim Mat Condensata & Tecnol Energia, Milan, Italy
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 08期
基金
欧盟地平线“2020”;
关键词
TOPOLOGY OPTIMIZATION; LENGTH SCALE; LEVEL-SET; CHECKERBOARD PATTERNS; COMPLIANT MECHANISMS; POISSONS RATIO; OPTIMAL BOUNDS; HOMOGENIZATION; SCHEME; DEPOSITION;
D O I
10.1038/s43588-024-00672-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the past few years, design of mechanical metamaterials has been empowered by computational tools that have allowed the community to overcome limitations of human intuition. By leveraging efficient optimization algorithms and computational physics models, it is now possible to explore vast design spaces, achieving new material functionalities with unprecedented performance. Here, we present our viewpoint on the state of the art of computational metamaterials design, discussing recent advances in topology optimization and machine learning design with respect to challenges in additive manufacturing. Computational tools have recently empowered mechanical metamaterials design. In this Perspective, advances to these approaches are discussed, notably mechanism-based design, topology optimization, the use of machine learning and the challenges for additive-manufactured metamaterial structures.
引用
收藏
页码:574 / 583
页数:10
相关论文
共 145 条
  • [1] GA topology optimization using random keys for tree encoding of structures
    Aguilar Madeira, J. F.
    Pina, H. L.
    Rodrigues, H. C.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 227 - 240
  • [2] Allaire G, 2005, CONTROL CYBERN, V34, P59
  • [3] Topology optimization of modulated and oriented periodic microstructures by the homogenization method
    Allaire, Gregoire
    Geoffroy-Donders, Perle
    Pantz, Olivier
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (07) : 2197 - 2229
  • [4] Efficient topology optimization in MATLAB using 88 lines of code
    Andreassen, Erik
    Clausen, Anders
    Schevenels, Mattias
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (01) : 1 - 16
  • [5] The properties of foams and lattices
    Ashby, MF
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838): : 15 - 30
  • [6] OPTIMAL BOUNDS AND MICROGEOMETRIES FOR ELASTIC 2-PHASE COMPOSITES
    AVELLANEDA, M
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) : 1216 - 1228
  • [7] Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modelling
    Bayat, Mohamad
    Zinovieva, Olga
    Ferrari, Federico
    Ayas, Can
    Langelaar, Matthijs
    Spangenberg, Jon
    Salajeghe, Roozbeh
    Poulios, Konstantinos
    Mohanty, Sankhya
    Sigmund, Ole
    Hattel, Jesper
    [J]. PROGRESS IN MATERIALS SCIENCE, 2023, 138
  • [8] Bendsoe M. P., 2003, Topology Optimization: Theory, Methods, and Applications, DOI DOI 10.1007/978-3-662-05086-6
  • [9] Bendsoe M. P., 1989, Structural Optimization, V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
  • [10] GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD
    BENDSOE, MP
    KIKUCHI, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) : 197 - 224