Interplay of soil characteristics and arbuscular mycorrhizal fungi diversity in alpine wetland restoration and carbon stabilization

被引:1
|
作者
Tang, Hao [1 ,2 ]
Li, Qian [3 ]
Bao, Qian [1 ,2 ]
Tang, Biao [4 ]
Li, Kun [5 ]
Ding, Yang [1 ,2 ,6 ]
Luo, Xiaojuan [2 ]
Zeng, Qiushu [2 ]
Liu, Size [7 ]
Shu, Xiangyang [1 ,2 ]
Liu, Weijia [8 ]
Du, Lei [1 ,2 ]
机构
[1] Sichuan Normal Univ, Key Lab Land Resources Evaluat & Monitoring Southw, Minist Educ, Chengdu, Peoples R China
[2] Sichuan Normal Univ, Fac Geog Resource Sci, Chengdu, Peoples R China
[3] Sichuan Agr Univ, Coll Resources, Chengdu, Peoples R China
[4] Sichuan Prov Cultivated Land Qual & Fertilizer Wor, Chengdu, Peoples R China
[5] Sichuan Acad Forestry, Chengdu, Peoples R China
[6] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan, Peoples R China
[7] Tianfu Yongxing Lab, Res Ctr Carbon Sequestrat & Ecol Restorat, Chengdu, Peoples R China
[8] Chengdu Acad Agr & Forestry Sci, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
ecological restoration; carbon stabilization; arbuscular mycorrhizal fungi; tea bag index; climate change mitigation; ORGANIC-CARBON; CLIMATE-CHANGE; NITROGEN;
D O I
10.3389/fmicb.2024.1376418
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Alpine wetlands are critical ecosystems for global carbon (C) cycling and climate change mitigation. Ecological restoration projects for alpine grazing wetlands are urgently needed, especially due to their critical role as carbon (C) sinks. However, the fate of the C pool in alpine wetlands after restoration from grazing remains unclear. In this study, soil samples from both grazed and restored wetlands in Zoige (near Hongyuan County, Sichuan Province, China) were collected to analyze soil organic carbon (SOC) fractions, arbuscular mycorrhizal fungi (AMF), soil properties, and plant biomass. Moreover, the Tea Bag Index (TBI) was applied to assess the initial decomposition rate (k) and stabilization factor (S), providing a novel perspective on SOC dynamics. The results of this research revealed that the mineral-associated organic carbon (MAOC) was 1.40 times higher in restored sites compared to grazed sites, although no significant difference in particulate organic carbon (POC) was detected between the two site types. Furthermore, the increased MAOC after restoration exhibited a significant positive correlation with various parameters including S, C and N content, aboveground biomass, WSOC, AMF diversity, and NH4+. This indicates that restoration significantly increases plant primary production, litter turnover, soil characteristics, and AMF diversity, thereby enhancing the C stabilization capacity of alpine wetland soils.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Taxonomic and functional diversity in arbuscular mycorrhizal fungi - is there any relationship?
    van der Heijden, MGA
    Scheublin, TR
    Brader, A
    NEW PHYTOLOGIST, 2004, 164 (02) : 201 - 204
  • [42] Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi
    Scott, Thomas W.
    Kiers, E. Toby
    Cooper, Guy A.
    dos Santos, Miguel
    West, Stuart A.
    ECOLOGY AND EVOLUTION, 2019, 9 (05): : 2425 - 2435
  • [43] Carbon sequestration in artificial silicate soils facilitated by arbuscular mycorrhizal fungi and glomalin-related soil protein
    Son, Yejin
    Stott, Kevin
    Manning, David A. C.
    Cooper, Julia M.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2021, 72 (02) : 863 - 870
  • [44] Effects of arbuscular mycorrhizal fungi on ecological restoration in coal mining areas
    Li, Shaopeng
    Bi, YinLi
    Kong, Weiping
    Yu, Haiyang
    Lang, Qiu
    Miao, Yu
    RUSSIAN JOURNAL OF ECOLOGY, 2015, 46 (05) : 431 - 437
  • [45] Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi
    Wirsel, SGR
    FEMS MICROBIOLOGY ECOLOGY, 2004, 48 (02) : 129 - 138
  • [46] Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates
    Zhang, Zhongfeng
    Mallik, Azim
    Zhang, Jinchi
    Huang, Yuqing
    Zhou, Longwu
    SOIL & TILLAGE RESEARCH, 2019, 194
  • [47] The effects of fine roots and arbuscular mycorrhizal fungi on soil macropores
    Zheng, Ying
    Chen, Ning
    Yu, Kailiang
    Zhao, Changming
    SOIL BIOLOGY & BIOCHEMISTRY, 2022, 175
  • [48] The effects of fine roots and arbuscular mycorrhizal fungi on soil macropores
    Zheng, Ying
    Chen, Ning
    Yu, Kailiang
    Zhao, Changming
    SOIL & TILLAGE RESEARCH, 2023, 225
  • [49] Arbuscular mycorrhizal fungi and water table affect wetland plant community composition
    Wolfe, Benjamin E.
    Weishampel, Peter A.
    Klironomos, John N.
    JOURNAL OF ECOLOGY, 2006, 94 (05) : 905 - 914
  • [50] The functional role of arbuscular mycorrhizal fungi in enhancing soil organic carbon stocks and stability in dryland
    Li, Meng-Ying
    Wang, Wei
    Yin, Hai-Hong
    Chen, Yinglong
    Ashraf, Muhammad
    Tao, Hong-Yan
    Li, Shi-Sheng
    Wang, Wen-Ying
    Yang, Chang-Lang
    Xiao, Yun-Li
    Zhu, Li
    Xiong, You-Cai
    SOIL & TILLAGE RESEARCH, 2025, 248