Multi-Scenario and Multi-Task Aware Feature Interaction for Recommendation System

被引:4
作者
Song, Derun [1 ]
Yang, Enneng [1 ]
Guo, Guibing [1 ]
Shen, Li [2 ]
Jiang, Linying [1 ]
Wang, Xingwei [1 ]
机构
[1] Northeastern Univ, 195 Chuangxin Rd, Shenyang 110169, Liaoning, Peoples R China
[2] JD Explore Acad, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; interaction;
D O I
10.1145/3651312
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-scenario and multi-task recommendation can use various feedback behaviors of users in different scenarios to learn users' preferences and then make recommendations, which has attracted attention. However, the existing work ignores feature interactions and the fact that a pair of feature interactions will have differing levels of importance under different scenario-task pairs, leading to sub-optimal user preference learning. In this article, we propose a Multi-scenario and Multi-task aware Feature Interaction model, dubbed MMFI, to explicitly model feature interactions and learn the importance of feature interaction pairs in different scenarios and tasks. Specifically, MMFI first incorporates a pairwise feature interaction unit and a scenario-task interaction unit to effectively capture the interaction of feature pairs and scenario-task pairs. Then MMFI designs a scenario-task aware attention layer for learning the importance of feature interactions from coarse-grained to fine-grained, improving the model's performance on various scenario-task pairs. More specifically, this attention layer consists of three modules: a fully shared bottom module, a partially shared middle module, and a specific output module. Finally, MMFI adapts two sparsity-aware functions to remove some useless feature interactions. Extensive experiments on two public datasets demonstrate the superiority of the proposed method over the existing multi-task recommendation, multi-scenario recommendation, and multi-scenario & multi-task recommendation models.
引用
收藏
页数:20
相关论文
共 63 条
[1]  
[Anonymous], 2016, P 1 WORKSHOP DEEP LE
[2]  
Bengio Y., 2009, P 26 ANN INT C MACH, P41
[3]  
Blondel M, 2016, ADV NEUR IN, V29
[4]  
Caruana R, 1993, P 10 INT C MACH LEAR, P41
[5]   PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information [J].
Chang, Jianxin ;
Zhang, Chenbin ;
Hui, Yiqun ;
Leng, Dewei ;
Niu, Yanan ;
Song, Yang ;
Gai, Kun .
PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, :3795-3804
[6]   Scenario-aware and Mutual-based approach for Multi-scenario Recommendation in E-Commerce [J].
Chen, Yuting ;
Wang, Yanshi ;
Ni, Yabo ;
Zeng, An-Xiang ;
Lin, Lanfen .
20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, :127-135
[7]   Deep Neural Networks for YouTube Recommendations [J].
Covington, Paul ;
Adams, Jay ;
Sargin, Emre .
PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, :191-198
[8]  
Dang Yizhou, 2023, P AAAI C ARTIFICIAL, P4225
[9]   A Unified Multi-task Learning Framework for Multi-goal Conversational Recommender Systems [J].
Deng, Yang ;
Zhang, Wenxuan ;
Xu, Weiwen ;
Lei, Wenqiang ;
Chua, Tat-Seng ;
Lam, Wai .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2023, 41 (03)
[10]   MSSM: A Multiple-level Sparse Sharing Model for Efficient Multi-Task Learning [J].
Ding, Ke ;
Dong, Xin ;
He, Yong ;
Cheng, Lei ;
Fu, Chilin ;
Huan, Zhaoxin ;
Li, Hai ;
Yan, Tan ;
Zhang, Liang ;
Zhang, Xiaolu ;
Mo, Linjian .
SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, :2237-2241