BEV-CFKT: A LiDAR-camera cross-modality-interaction fusion and knowledge transfer framework with transformer for BEV 3D object detection

被引:2
作者
Wei, Ming
Li, Jiachen
Kang, Hongyi
Huang, Yijie
Lu, Jun-Guo [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
LiDAR-Camera fusion; BEV; Cross-modality interaction; Knowledge transfer; Transformer; 3D detection; Temporal fusion;
D O I
10.1016/j.neucom.2024.127527
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The BEV-CFKT proposed in this paper leverages knowledge transfer through transformers for LiDAR-Camera fusion in the Bird's-Eye-View (BEV) space, aiming to achieve accurate and robust 3D object detection. BEVCFKT comprises three main components, which include the generation of BEV features from images and point clouds, cross -modality interaction, and hybrid object queries using a monocular detection head. By unifying features from both point clouds and images into the BEV space, we simplify modal interaction, facilitate knowledge transfer, and extract richer structural and semantic information from multimodal data. This effectively enhances the network's performance. To further improve detection performance, BEV-CFKT incorporates a temporal fusion module. Additionally, a hybrid object queries module based on a monocular detection head accelerates the convergence of our model. We demonstrate the effectiveness of our approach through an extensive set of experiments.
引用
收藏
页数:11
相关论文
共 53 条
  • [1] TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers
    Bai, Xuyang
    Hu, Zeyu
    Zhu, Xinge
    Huang, Qingqiu
    Chen, Yilun
    Fu, Hangbo
    Tai, Chiew-Lan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1080 - 1089
  • [2] Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
  • [3] Cai HX, 2023, Arxiv, DOI arXiv:2303.17099
  • [4] Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
  • [5] MSL3D: 3D object detection from monocular, stereo and point cloud for autonomous driving
    Chen, Wenyu
    Li, Peixuan
    Zhao, Huaici
    [J]. NEUROCOMPUTING, 2022, 494 : 23 - 32
  • [6] FUTR3D: A Unified Sensor Fusion Framework for 3D Detection
    Chen, Xuanyao
    Zhang, Tianyuan
    Wang, Yue
    Wang, Yilun
    Zhao, Hang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 172 - 181
  • [7] Chen ZH, 2022, Arxiv, DOI arXiv:2211.09386
  • [8] Contributors M., 2020, MMDetection3D: OpenMMlab next-generation platform for general 3D object detection
  • [9] Image guidance based 3D vehicle detection in traffic scene
    Dai, Deyun
    Wang, Jikai
    Chen, Zonghai
    Zhao, Hao
    [J]. NEUROCOMPUTING, 2021, 428 : 1 - 11
  • [10] Dynamic DETR: End-to-End Object Detection with Dynamic Attention
    Dai, Xiyang
    Chen, Yinpeng
    Yang, Jianwei
    Zhang, Pengchuan
    Yuan, Lu
    Zhang, Lei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2968 - 2977