A novel ionic-liquid-mediated covalent organic framework as a strong electrophile for high-performance iodine removal

被引:10
|
作者
Fu, Jie [1 ]
Liu, Jia-Ying [1 ]
Zhou, Yue-Ru [1 ]
Zhang, Lei [1 ]
Wang, Shuang-Long [1 ]
Qin, Song [1 ]
Fan, Maohong [2 ,3 ]
Tao, Guo-Hong [1 ]
He, Ling [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
[2] Univ Wyoming, Coll Engn & Phys Sci, Laramie, WY 82071 USA
[3] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA
关键词
Covalent organic frameworks; Electrophiles; Ionic liquids; Gas adsorption; VOLATILE IODINE; CAPTURE; EFFICIENT; ADSORPTION; STORAGE;
D O I
10.1016/j.cej.2024.150913
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The research on the adsorption and conversion of non-polar gases (carbon dioxide, hydrogen, iodine, etc.) has attracted global attention. Extensive work has revealed the intuitive impact of the heteroatom effect on the adsorption performance of covalent organic framework (COF) adsorbents for non-polar gases. However, more influencing factors must be studied to more precisely design and construct target-specific COF adsorbents. In this work, an underlying influencing factor, local polarity, is discovered, which is defined as the polarity of the functional moiety. Due to the substitution of strong electrophile, the electron cloud distribution of the COF framework is regulated, and the local polarity that better matches the adsorption of target electrophilic gas (iodine) has been observed. The local polarity of COF has been controlled through several strong electrophilic ionic liquids, dramatically improving adsorption performance. The saturated adsorption capacity increases from 1.5 to 5.2 g.g(-1), and the adsorption kinetics index k 80% value increases from 0.51 to 2.69 g.g(-1).h(-1). The insight would support precise chemical regulation of target-specific COF in energy and environment science.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion
    Hu, Yuhao
    Xiao, Hongyan
    Fu, Lin
    Liu, Pei
    Wu, Yadong
    Chen, Weipeng
    Qian, Yongchao
    Zhou, Shengyang
    Kong, Xiang-yu
    Zhang, Zhen
    Jiang, Lei
    Wen, Liping
    ADVANCED MATERIALS, 2023, 35 (24)
  • [2] Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal
    Wang, Guangzhe
    Yuan, Jinqiu
    Zhao, Junhui
    Li, Yafei
    Zhang, Runnan
    Shen, Jianliang
    Wang, Xiaoyao
    Wu, Hong
    El-Gendi, Ayman
    Su, Yanlei
    Jiang, Zhongyi
    JOURNAL OF MEMBRANE SCIENCE, 2022, 650
  • [3] Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries
    Wen, Yucheng
    Wang, Xianshu
    Yang, Yan
    Liu, Mingzhu
    Tu, Wenqiang
    Xu, Mengqing
    Sun, Gengzhi
    Kawaguchi, Seigou
    Cao, Guozhong
    Li, Weishan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26540 - 26548
  • [4] Ionic-rich triazine-based two-dimensional covalent organic framework materials for high-performance zinc-iodine battery
    Huang, Tiao
    Wang, Shenglin
    Hu, Hui
    Wang, Jianyi
    Zhang, Xiaosong
    Gao, Yanan
    JOURNAL OF POWER SOURCES, 2025, 633
  • [5] Barbituric acid derived covalent organic framework and its CNT composite as high-performance adsorbents for organic dye removal
    Thakkar, Harshil
    Bhatt, Monark
    Thakore, Sonal
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [6] High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework
    Zhang, Weiyu
    Sun, Qihua
    Zhu, Yuqing
    Sun, Jun
    Wu, Zhaofeng
    Tian, Ning
    ACS SENSORS, 2024, 9 (06): : 3262 - 3271
  • [7] A graphene-covalent organic framework hybrid for high-performance supercapacitors
    Wang, Chaojun
    Liu, Fei
    Chen, Junsheng
    Yuan, Ziwen
    Liu, Chang
    Zhang, Xinshi
    Xu, Meiying
    Wei, Li
    Chen, Yuan
    ENERGY STORAGE MATERIALS, 2020, 32 : 448 - 457
  • [8] High-Performance All-Solid-State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites
    Huang, Jun
    Cheng, Lei
    Zhang, Zhenyang
    Li, Chen
    Bang, Ki-Taek
    Liem, Albert
    Luo, Hang
    Hu, Chuan
    Lee, Young Moo
    Lu, Yingying
    Wang, Yanming
    Kim, Yoonseob
    ADVANCED ENERGY MATERIALS, 2024, 14 (27)
  • [9] Ionic covalent organic framework based quasi-solid-state electrolyte for high-performance lithium metal battery
    Tan, Xueling
    Zhong, Juanqi
    Tong, Yongfen
    Guo, Lin
    Xie, Yu
    Zhao, Jinsheng
    POLYMER, 2025, 317
  • [10] Umpolung of a covalent organic framework for high-performance cathodic sodium ion storage
    Kang, Fangyuan
    Zhang, Yuchan
    Chen, Zihao
    Bai, Zhaowen
    Gu, Qianfeng
    Yang, Jinglun
    Liu, Qi
    Ren, Yang
    Lee, Chun-Sing
    Zhang, Qichun
    CHEMICAL SCIENCE, 2025,