3D medical image segmentation based on semi-supervised learning using deep co-training

被引:2
|
作者
Yang, Jingdong [1 ]
Li, Haoqiu [1 ]
Wang, Han [1 ]
Han, Man [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[2] China Acad Chinese Med Sci, Guanganmen Hosp, Div Rheumatol, Beijing 100053, Peoples R China
基金
中国国家自然科学基金;
关键词
3D medical image segmentation; Semi -supervised learning; Co; -training; Pseudo labels;
D O I
10.1016/j.asoc.2024.111641
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, artificial intelligence has been applied to 3D COVID-19 medical image diagnosis, which reduces detection costs and missed diagnosis rates with higher predictive accuracy, and diagnostic efficiency. However, the limited size and low quality of clinical 3D medical image samples have hindered the segmentation performance of 3D models. Therefore, we propose a 3D medical image segmentation model based on semi-supervised learning using co-training. Multi-view and multi-modal images are generated using spatial flipping and windowing techniques to enhance the spatial diversity of 3D image samples. A pseudo label generation module based on confidence-weights is employed to generate reliable pseudo labels for non-annotated data, thereby increasing the sample size and reducing overfitting. The proposed approach utilizes a three-stage training process: firstly, training a single network based on annotated data; secondly, incorporating non-annotated data to train a dualmodal network and generate pseudo labels; finally, jointly training six models in three dimensions using both annotated and pseudo labels generated from multi-view and multi-modal images, aiming to enhance segmentation accuracy and generalization performance. Additionally, a consistency regularization loss is applied to reduce noises and accelerate convergence of the training. Moreover, a heatmap visualization method is employed to focus on the attention of features at each stage of training, providing effective reference for clinical diagnosis. Experiments were conducted on an open dataset of 3D COVID-19 CT samples and a non-annotated dataset from TCIA, including 771 NIFTI-format CT images from 661 COVID-19 patients. The results of 5-fold cross-validation show that the proposed model achieves a segmentation accuracy of Dice=73.30 %, ASD=10.633, Sensitivity=63.00 %, and Specificity=99.60 %. Compared to various typical semi-supervised learning 3D segmentation models, it demonstrates better segmentation accuracy and generalization performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SEMI-SUPERVISED CO-TRAINING AND ACTIVE LEARNING FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Samiappan, Sathishkumar
    Moorhead, Robert J., II
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 401 - 404
  • [22] Semi-Supervised Learning of Alternatively Spliced Exons Using Co-Training
    Tangirala, Karthik
    Caragea, Doina
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM 2011), 2011, : 243 - 246
  • [23] A semi-supervised extreme learning machine method based on co-training
    Li, Kunlun
    Zhang, Juan
    Xu, Hongyu
    Luo, Shangzong
    Li, Hexin
    Journal of Computational Information Systems, 2013, 9 (01): : 207 - 214
  • [24] SEMI-SUPERVISED CONTRASTIVE LEARNING OF GLOBAL AND LOCAL REPRESENTATION FOR 3D MEDICAL IMAGE SEGMENTATION
    Jia, Chuang
    Xue, Jian
    Lu, Ke
    Wu, Zhongqi
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 26 - 30
  • [25] Question classification based on co-training style semi-supervised learning
    Yu, Zhengtao
    Su, Lei
    Li, Lina
    Zhao, Quan
    Mao, Cunli
    Guo, Jianyi
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1975 - 1980
  • [26] Semi-Supervised Regression with Co-Training
    Zhou, Zhi-Hua
    Li, Ming
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 908 - 913
  • [27] An Improved Co-Training and Generative Adversarial Network (Diff-CoGAN) for Semi-Supervised Medical Image Segmentation
    Li, Guoqin
    Jamil, Nursuriati
    Hamzah, Raseeda
    INFORMATION, 2023, 14 (03)
  • [28] FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
    Wang, Dong
    Zhang, Yuan
    Zhang, Kexin
    Wang, Liwei
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3950 - 3959
  • [29] Co-Training Semi-Supervised Deep Learning for Sentiment Classification of MOOC Forum Posts
    Chen, Jing
    Feng, Jun
    Sun, Xia
    Liu, Yang
    SYMMETRY-BASEL, 2020, 12 (01):
  • [30] Semi-supervised Learning with Multi-Head Co-Training
    Chen, Mingcai
    Du, Yuntao
    Zhang, Yi
    Qian, Shuwei
    Wang, Chongjun
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6278 - 6286