Spectrometer-Less Remote Sensing Image Classification Based on Gate-Tunable van der Waals Heterostructures

被引:4
|
作者
Yu, Yali [1 ,2 ]
Zhong, Mianzeng [3 ]
Xiong, Tao [1 ,2 ]
Yang, Jian [4 ]
Hu, Pengwei [5 ]
Long, Haoran [1 ,2 ]
Zhou, Ziqi [1 ]
Xin, Kaiyao [1 ,2 ]
Liu, Yue-Yang [1 ]
Yang, Juehan [1 ]
Qiao, Jianzhong [4 ]
Liu, Duanyang [1 ]
Wei, Zhongming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Cent South Univ, Sch Phys, Hunan Key Lab Nanophoton & Devices, Changsha 410083, Hunan, Peoples R China
[4] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[5] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
alloy engineering; deep learning algorithms; gate-tunable photodetector; target classification; wide-spectral; MINIATURIZED SPECTROMETERS; VISION;
D O I
10.1002/advs.202309781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology. Artificial designed gate-tunable wide-spectral 2D-vdWH GaTe0.5Se0.5/WSe2-based photodetector, requiring no additional auxiliary components, can achieve an average UV-Vis-NIR remote sensing image classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%). It presents a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology. image
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Gate-Tunable Photodiodes Based on Mixed-Dimensional Te/MoTe2 Van der Waals Heterojunctions
    Zhao, Dongyang
    Chen, Yan
    Jiang, Wei
    Wang, Xudong
    Liu, Jingjing
    Huang, Xinning
    Han, Sancan
    Lin, Tie
    Shen, Hong
    Wang, Xianying
    Hu, Weida
    Meng, Xiangjian
    Chu, Junhao
    Wang, Jianlu
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (05)
  • [22] Gate-tunable van der Waals heterostructure based on semimetallic WTe2 and semiconducting MoTe2
    Xie, Yuan
    Wu, Enxiu
    Geng, Guangyu
    Zhang, Daihua
    Hu, Xiaodong
    Liu, Jing
    APPLIED PHYSICS LETTERS, 2021, 118 (13)
  • [23] Gate-Tunable Exchange Bias and Volage-Controlled Magnetization Switching in a van der Waals Ferromagnet
    Sharma, Mayank
    Avedissian, Garen
    Skowronski, Witold
    Jo, Junhyeon
    Chuvilin, Andrey
    Casanova, Felix
    Gobbi, Marco
    Hueso, Luis E.
    ADVANCED MATERIALS INTERFACES, 2024,
  • [24] Gate-tunable transport in van der Waals topological insulator Bi4Br4 nanobelts
    Wu, Si-Li
    Ren, Zhi-Hui
    Zhang, Yu-Qi
    Li, Yong-Kai
    Han, Jun-Feng
    Duan, Jun-Xi
    Wang, Zhi-Wei
    Li, Cai-Zhen
    Yao, Yu-Gui
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (23)
  • [25] Graphene/α-tellurene van der Waals heterobilayers: Interlayer coupling and gate-tunable carrier type and Schottky barriers
    Liu, Hairui
    Gao, Rui
    Yang, Jien
    Yang, Feng
    Wang, Tianxing
    Zhang, Zhuxia
    Liu, Xuguang
    Jia, Husheng
    Xu, Bingshe
    Ma, Heng
    APPLIED SURFACE SCIENCE, 2020, 525
  • [26] Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8
    Meng, Kui
    Li, Zeya
    Gao, Zhansheng
    Bi, Xiangyu
    Chen, Peng
    Qin, Feng
    Qiu, Caiyu
    Xu, Lingyun
    Huang, Junwei
    Wu, Jinxiong
    Luo, Feng
    Yuan, Hongtao
    INFOMAT, 2024, 6 (03)
  • [27] Electric Field Screening in Gate-Tunable van der Waals 2D-Metal/InSe Junctions
    Shen, Tao
    Liu, Jia
    Liu, Xinyi
    Cheng, Peng
    Ren, Ji-Chang
    Li, Shuang
    Liu, Wei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (47)
  • [28] Floating gate photo-memory devices based on van der Waals heterostructures for neuromorphic image recognition
    Zubair, Muhammad
    Dong, Yi
    Cai, Bin
    Fu, Xiao
    Wang, Hailu
    Li, Tangxin
    Wang, Jinjin
    Liu, Shuning
    Xia, Mengjia
    Zhao, Qixiao
    Xie, Runzhang
    Xu, Hangyu
    Jiang, Xiaoyong
    Hu, Shuhong
    Song, Bo
    Chen, Xiaolong
    Zhou, Jiadong
    Dong, Lixin
    Miao, Jinshui
    APPLIED PHYSICS LETTERS, 2023, 123 (05)
  • [29] Gate tunable light-matter interaction in natural biaxial hyperbolic van der Waals heterostructures
    Bapat, Aneesh
    Dixit, Saurabh
    Gupta, Yashika
    Low, Tony
    Kumar, Anshuman
    NANOPHOTONICS, 2022, 11 (10) : 2329 - 2340
  • [30] Atomic-level charge transport mechanism in gate-tunable anti-ambipolar van der Waals heterojunctions
    Wang, Kuang-Chung
    Valencia, Daniel
    Charles, James
    Henning, Alex
    Beck, Megan E.
    Sangwan, Vinod K.
    Lauhon, Lincoln J.
    Hersam, Mark C.
    Kubis, Tillmann
    APPLIED PHYSICS LETTERS, 2021, 118 (08)