Spectrometer-Less Remote Sensing Image Classification Based on Gate-Tunable van der Waals Heterostructures

被引:4
|
作者
Yu, Yali [1 ,2 ]
Zhong, Mianzeng [3 ]
Xiong, Tao [1 ,2 ]
Yang, Jian [4 ]
Hu, Pengwei [5 ]
Long, Haoran [1 ,2 ]
Zhou, Ziqi [1 ]
Xin, Kaiyao [1 ,2 ]
Liu, Yue-Yang [1 ]
Yang, Juehan [1 ]
Qiao, Jianzhong [4 ]
Liu, Duanyang [1 ]
Wei, Zhongming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Cent South Univ, Sch Phys, Hunan Key Lab Nanophoton & Devices, Changsha 410083, Hunan, Peoples R China
[4] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[5] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
alloy engineering; deep learning algorithms; gate-tunable photodetector; target classification; wide-spectral; MINIATURIZED SPECTROMETERS; VISION;
D O I
10.1002/advs.202309781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology. Artificial designed gate-tunable wide-spectral 2D-vdWH GaTe0.5Se0.5/WSe2-based photodetector, requiring no additional auxiliary components, can achieve an average UV-Vis-NIR remote sensing image classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%). It presents a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures
    Wang, Sheng
    Yoo, Seokjae
    Zhao, Sihan
    Zhao, Wenyu
    Kahn, Salman
    Cui, Dingzhou
    Wu, Fanqi
    Jiang, Lili
    Utama, M. Iqbal Bakti
    Li, Hongyuan
    Li, Shaowei
    Zibrov, Alexander
    Regan, Emma
    Wang, Danqing
    Zhang, Zuocheng
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhou, Chongwu
    Wang, Feng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures
    Sheng Wang
    SeokJae Yoo
    Sihan Zhao
    Wenyu Zhao
    Salman Kahn
    Dingzhou Cui
    Fanqi Wu
    Lili Jiang
    M. Iqbal Bakti Utama
    Hongyuan Li
    Shaowei Li
    Alexander Zibrov
    Emma Regan
    Danqing Wang
    Zuocheng Zhang
    Kenji Watanabe
    Takashi Taniguchi
    Chongwu Zhou
    Feng Wang
    Nature Communications, 12
  • [3] Gate-Tunable Multiband van der Waals Photodetector and Polarization Sensor
    Shen, Daozhi
    Yang, Heebong
    Patel, Tarun
    Rhodes, Daniel A.
    Timusk, Thomas
    Zhou, Y. Norman
    Kim, Na Young
    Tsen, Adam W.
    ACS NANO, 2024, 18 (17) : 11193 - 11199
  • [4] Gate-tunable spin valve effect in Fe3GeTe2-based van der Waals heterostructures
    Zhou, Ling
    Huang, Junwei
    Tang, Ming
    Qiu, Caiyu
    Qin, Feng
    Zhang, Caorong
    Li, Zeya
    Wu, Di
    Yuan, Hongtao
    INFOMAT, 2023, 5 (03)
  • [5] A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction
    Yaning Wang
    Wanying Li
    Yimeng Guo
    Xin Huang
    Zhaoping Luo
    Shuhao Wu
    Hai Wang
    Jiezhi Chen
    Xiuyan Li
    Xuepeng Zhan
    Hanwen Wang
    JournalofMaterialsScience&Technology, 2022, 128 (33) : 239 - 244
  • [6] Gate-tunable flat bands in van der Waals patterned dielectric superlattices
    Shi, Li-kun
    Ma, Jing
    Song, Justin C. W.
    2D MATERIALS, 2020, 7 (01)
  • [7] A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction
    Wang, Yaning
    Li, Wanying
    Guo, Yimeng
    Huang, Xin
    Luo, Zhaoping
    Wu, Shuhao
    Wang, Hai
    Chen, Jiezhi
    Li, Xiuyan
    Zhan, Xuepeng
    Wang, Hanwen
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 128 : 239 - 244
  • [8] Gate-Tunable Anomalous Hall Effect in Stacked van der Waals Ferromagnetic Insulator-Topological Insulator Heterostructures
    Allcca, Andres E. Llacsahuanga
    Pan, Xing-Chen
    Miotkowski, Ireneusz
    Tanigaki, Katsumi
    Chen, Yong P.
    NANO LETTERS, 2022, 22 (20) : 8130 - 8136
  • [9] Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures
    Yang, Haozhe
    Chi, Zhendong
    Avedissian, Garen
    Dolan, Eoin
    Karuppasamy, Muthumalai
    Martin-Garcia, Beatriz
    Gobbi, Marco
    Sofer, Zdenek
    Hueso, Luis E.
    Casanova, Felix
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
  • [10] Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor
    Wang, Chen-Yu
    Liang, Shi-Jun
    Wang, Shuang
    Wang, Pengfei
    Li, Zhu'an
    Wang, Zhongrui
    Gao, Anyuan
    Pan, Chen
    Liu, Chuan
    Liu, Jian
    Yang, Huafeng
    Liu, Xiaowei
    Song, Wenhao
    Wang, Cong
    Wang, Xiaomu
    Chen, Kunji
    Wang, Zhenlin
    Watanabe, Kenji
    Taniguchi, Takashi
    Yang, J. Joshua
    Miao, Feng
    Cheng, Bin
    SCIENCE ADVANCES, 2020, 6 (26)