A modified inertial projection and contraction algorithms for quasi-variational inequalities

被引:2
作者
Zhang L. [1 ]
Zhao H. [2 ]
Lv Y. [3 ]
机构
[1] School of Mathematics and Statistics, Southwest University, Chongqing
[2] Computer, Electrical, and Mathematical Science and Enginerring (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal
[3] School of Information and Mathematics, Yangtze University, Jingzhou
来源
Applied Set-Valued Analysis and Optimization | 2019年 / 1卷 / 01期
基金
中国国家自然科学基金;
关键词
Contraction algorithm; Extragradient method; Fixed point problem; Inertial type algorithm; Projection; Quasivariational inequality;
D O I
10.23952/asvao.1.2019.1.06
中图分类号
学科分类号
摘要
In this paper, we propose a modified intertial projection and contraction algorithm for solving quasi variational inequalities. A weak convergence theorem is established in Hilbert spaces. Numerical examples are provided to demonstrate the validity of our proposed algorithm. © 2019 Applied Set-Valued Analysis and Optimization.
引用
收藏
页码:63 / 76
页数:13
相关论文
共 23 条
[1]  
Alvarez F., Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim, 14, pp. 773-782, (2004)
[2]  
Ansari Q.H., Balooee J., Yao J.C., Extended general nonlinear quasi-variational inequalities and projection dynamical systems, Taiwaness J. Math, 17, pp. 1321-1352, (2013)
[3]  
Atipin A.S., Jacimovic M., Mijajlovic N., Extragradient method for solving quasivariational inequalities, Optimization, 67, pp. 103-112, (2018)
[4]  
Attouch H., Peypouquet J., Redont P., Adynamical approach to an inertial forwardCbackward algorithm for convex minimization, SIAM J. Optim, 24, pp. 232-256, (2014)
[5]  
Attouch H., Chbani Z., Peypouquet J., Redont P., Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity, Math. Program, 169, pp. 123-175, (2018)
[6]  
Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal, 9, pp. 3-11, (2001)
[7]  
Bauschke H.H., Combettes P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, (2011)
[8]  
Bot R.I., Csetnek E.R., A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct, Anal. Optim, 36, pp. 951-963, (2015)
[9]  
Chen J., Kobis E., Kobis M.A., Yao J.C., Optimality conditions for solutions of constrained inverse vector variational inequalities by means of nonlinear scalarization, J. Nonlinear Var. Anal, 1, pp. 145-158, (2017)
[10]  
Censor Y., Gibali A., Reich S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl, 148, pp. 318-335, (2011)