Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma

被引:6
作者
Liu, Han [1 ]
Lv, Zongwei [1 ]
Zhang, Gong [1 ]
Yan, Zhenhong [1 ]
Bai, Song [1 ]
Dong, Dan [2 ]
Wang, Kefeng [1 ]
机构
[1] China Med Univ, Shengjing Hosp, Dept Urol, 36 Sanhao St, Shenyang 110004, Liaoning, Peoples R China
[2] China Med Univ, Coll Basic Med Sci, 77 Puhe Rd, Shenyang 110122, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Immunotherapy; Renal cell carcinoma; Tumor-associated macrophages; Tumor microenvironment; MYELOID CELLS; THERAPY; CANCER; ACTIVATION; PROGRESSION; GAMMA; MICROENVIRONMENT; INFILTRATION; POLARIZATION; EXPRESSION;
D O I
10.1186/s13046-024-03164-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.
引用
收藏
页数:16
相关论文
共 126 条
[31]   Magnetism-mediated targeting hyperthermia-immunotherapy in "cold" tumor with CSF1R inhibitor [J].
Fang, Yuefei ;
He, Yang ;
Wu, Canhao ;
Zhang, Meng ;
Gu, Zeyun ;
Zhang, Jiaxin ;
Liu, Ergang ;
Xu, Qin ;
Asrorov, Akmal M. ;
Huang, Yongzhuo .
THERANOSTICS, 2021, 11 (14) :6860-6872
[32]   Macrophage-derived exosomal miR-342-3p promotes the progression of renal cell carcinoma through the NEDD4L/CEP55 axis [J].
Feng, Jiafu ;
Xu, Bei ;
Dai, Hunmei ;
Wang, Yaodong ;
Xie, Gang ;
Yang, Wenyu ;
Zhang, Bin ;
LI, Xiaohan ;
Wang, Jun .
ONCOLOGY RESEARCH, 2021, 29 (05) :331-349
[33]   CSF1/CSF1R Signaling Inhibitor Pexidartinib (PLX3397) Reprograms Tumor-Associated Macrophages and Stimulates T-cell Infiltration in the Sarcoma Microenvironment [J].
Fujiwara, Tomohiro ;
Yakoub, Mohamed A. ;
Chandler, Andrew ;
Christ, Alexander B. ;
Yang, Guangli ;
Ouerfelli, Ouathek ;
Rajasekhar, Vinagolu K. ;
Yoshida, Aki ;
Kondo, Hiroya ;
Hata, Toshiaki ;
Tazawa, Hiroshi ;
Dogan, Yildirim ;
Moore, Malcolm A. S. ;
Fujiwara, Toshiyoshi ;
Ozaki, Toshifumi ;
Purdue, Ed ;
Healey, John H. .
MOLECULAR CANCER THERAPEUTICS, 2021, 20 (08) :1388-1399
[34]   Regulation of pancreatic cancer therapy resistance by chemokines [J].
Gautam, Shailendra K. ;
Basu, Soumi ;
Aithal, Abhijit ;
Dwivedi, Nidhi ., V ;
Gulati, Mansi ;
Jain, Maneesh .
SEMINARS IN CANCER BIOLOGY, 2022, 86 :69-80
[35]   CD47 Blockade Inhibits Tumor Progression through Promoting Phagocytosis of Tumor Cells by M2 Polarized Macrophages in Endometrial Cancer [J].
Gu, Shenglan ;
Ni, Ting ;
Wang, Jing ;
Liu, Yao ;
Fan, Qiong ;
Wang, Yiwei ;
Huang, Ting ;
Chu, Yiwei ;
Sun, Xiao ;
Wang, Yudong .
JOURNAL OF IMMUNOLOGY RESEARCH, 2018, 2018
[36]   Hypoxic TAM-derived exosomal miR-155-5p promotes RCC progression through HuR-dependent IGF1R/AKT/PI3K pathway [J].
Gu, Wenyu ;
Gong, Linjing ;
Wu, Xu ;
Yao, Xudong .
CELL DEATH DISCOVERY, 2021, 7 (01)
[37]   Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients [J].
Halama, Niels ;
Zoernig, Inka ;
Berthel, Anna ;
Kahlert, Christoph ;
Klupp, Fee ;
Suarez-Carmona, Meggy ;
Suetterlin, Thomas ;
Brand, Karsten ;
Krauss, Juergen ;
Lasitschka, Felix ;
Lerchl, Tina ;
Luckner-Minden, Claudia ;
Ulrich, Alexis ;
Koch, Moritz ;
Weitz, Juergen ;
Schneider, Martin ;
Buechler, Markus W. ;
Zitvogel, Laurence ;
Herrmann, Thomas ;
Benner, Axel ;
Kunz, Christina ;
Luecke, Stephan ;
Springfeld, Christoph ;
Grabe, Niels ;
Falk, Christine S. ;
Jaeger, Dirk .
CANCER CELL, 2016, 29 (04) :587-601
[38]   Crosstalk of renal cell carcinoma cells and tumor-associated macrophages aggravates tumor progression by modulating muscleblind-like protein 2/B-cell lymphoma 2/beclin 1-mediated autophagy [J].
He, Cheng ;
Li, Yang ;
Chen, Zhi-Yong ;
Huang, Chang-Kun .
CYTOTHERAPY, 2023, 25 (03) :298-309
[39]   Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting [J].
Hourani, Tetiana ;
Holden, James A. ;
Li, Wenyi ;
Lenzo, Jason C. ;
Hadjigol, Sara ;
O'Brien-Simpson, Neil M. .
FRONTIERS IN ONCOLOGY, 2021, 11
[40]   Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity [J].
Hoves, Sabine ;
Ooi, Chia-Huey ;
Wolter, Carsten ;
Sade, Hadassah ;
Bissinger, Stefan ;
Schmittnaegel, Martina ;
Ast, Oliver ;
Giusti, Anna M. ;
Wartha, Katharina ;
Runza, Valeria ;
Xu, Wei ;
Kienast, Yvonne ;
Cannarile, Michael A. ;
Levitsky, Hyam ;
Romagnoli, Solange ;
De Palma, Michele ;
Ruttinger, Dominik ;
Ries, Carola H. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2018, 215 (03) :859-876