Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma

被引:1
作者
Liu, Han [1 ]
Lv, Zongwei [1 ]
Zhang, Gong [1 ]
Yan, Zhenhong [1 ]
Bai, Song [1 ]
Dong, Dan [2 ]
Wang, Kefeng [1 ]
机构
[1] China Med Univ, Shengjing Hosp, Dept Urol, 36 Sanhao St, Shenyang 110004, Liaoning, Peoples R China
[2] China Med Univ, Coll Basic Med Sci, 77 Puhe Rd, Shenyang 110122, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Immunotherapy; Renal cell carcinoma; Tumor-associated macrophages; Tumor microenvironment; MYELOID CELLS; THERAPY; CANCER; ACTIVATION; PROGRESSION; GAMMA; MICROENVIRONMENT; INFILTRATION; POLARIZATION; EXPRESSION;
D O I
10.1186/s13046-024-03164-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.
引用
收藏
页数:16
相关论文
共 126 条
[1]   Targeting CD47-SIRPa axis shows potent preclinical anti-tumor activity as monotherapy and synergizes with PARP inhibition [J].
Al-Sudani, Hussein ;
Ni, Ying ;
Jones, Philip ;
Karakilic, Huseyin ;
Cui, Lei ;
Johnson, Lisa D. S. ;
Rose, Peter G. ;
Olawaiye, Alexander ;
Edwards, Robert P. ;
Uger, Robert A. ;
Lin, Gloria H. Y. ;
Mahdi, Haider .
NPJ PRECISION ONCOLOGY, 2023, 7 (01)
[2]   Prognostic role of macrophage migration inhibitory factor in patients with clear cell renal cell carcinoma [J].
An, Hyo Jung ;
Koh, Hyun Min ;
Lee, Jong Sil ;
Song, Dae Hyun .
MEDICINE, 2020, 99 (50) :E23277
[3]   Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses [J].
Anfray, Clement ;
Ummarino, Aldo ;
Torres Andon, Fernando ;
Allavena, Paola .
CELLS, 2020, 9 (01)
[4]   The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy [J].
Asiry, Saeed ;
Kim, Gina ;
Filippou, Panagiota S. ;
Sanchez, Luis Rivera ;
Entenberg, David ;
Marks, Douglas K. ;
Oktay, Maja H. ;
Karagiannis, George S. .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[5]   Immunomodulatory Activity of a Colony-stimulating Factor-1 Receptor Inhibitor in Patients with Advanced Refractory Breast or Prostate Cancer: A Phase I Study [J].
Autio, Karen A. ;
Klebanoff, Christopher A. ;
Schaer, David ;
Kauh, John Sae Wook ;
Slovin, Susan F. ;
Adamow, Matthew ;
Blinder, Victoria S. ;
Brahmachary, Manisha ;
Carlsen, Michelle ;
Comen, Elizabeth ;
Danila, Daniel C. ;
Doman, Thompson N. ;
Durack, Jeremy C. ;
Fox, Josef J. ;
Gluskin, Jill S. ;
Hoffman, David M. ;
Kang, Suhyun ;
Kang, Praneet ;
Landa, Jonathan ;
McAndrew, Philomena F. ;
Modi, Shanu ;
Morris, Michael J. ;
Novosiadly, Ruslan ;
Rathkopf, Dana E. ;
Sanford, Rachel ;
Chapman, Sonya C. ;
Tate, Courtney M. ;
Yu, Danni ;
Wong, Phillip ;
McArthur, Heather L. .
CLINICAL CANCER RESEARCH, 2020, 26 (21) :5609-5620
[6]   Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics [J].
Babaeijandaghi, Farshad ;
Cheng, Ryan ;
Kajabadi, Nasim ;
Soliman, Hesham ;
Chang, Chih-Kai ;
Smandych, Josh ;
Tung, Lin Wei ;
Long, Reece ;
Ghassemi, Amirhossein ;
Rossi, Fabio M., V .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (651)
[7]   CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans [J].
Beatty, Gregory L. ;
Chiorean, Elena G. ;
Fishman, Matthew P. ;
Saboury, Babak ;
Teitelbaum, Ursina R. ;
Sun, Weijing ;
Huhn, Richard D. ;
Song, Wenru ;
Li, Dongguang ;
Sharp, Leslie L. ;
Torigian, Drew A. ;
O'Dwyer, Peter J. ;
Vonderheide, Robert H. .
SCIENCE, 2011, 331 (6024) :1612-1616
[8]   Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition [J].
Bissinger, Stefan ;
Hage, Carina ;
Wagner, Vinona ;
Maser, Ilona-Petra ;
Brand, Verena ;
Schmittnaegel, Martina ;
Jegg, Anna-Maria ;
Cannarile, Michael ;
Watson, Carl ;
Klaman, Irina ;
Rieder, Natascha ;
Loyola, Alejandra Gonzalez ;
Petrova, Tatiana, V ;
Cassier, Philippe A. ;
Gomez-Roca, Carlos ;
Sibaud, Vincent ;
De Palma, Michele ;
Hoves, Sabine ;
Ries, Carola H. .
SCIENCE TRANSLATIONAL MEDICINE, 2021, 13 (598)
[9]   Macrophage Polarization States in the Tumor Microenvironment [J].
Boutilier, Ava J. ;
Elsawa, Sherine F. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (13)
[10]   Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact [J].
Braoudaki, Maria ;
Ahmad, Mohammed Saqif ;
Mustafov, Denis ;
Seriah, Sara ;
Siddiqui, Mohammad Naseem ;
Siddiqui, Shoib Sarwar .
SEMINARS IN CANCER BIOLOGY, 2022, 86 :436-449