Galectin-3 protects distal convoluted tubules in rhabdomyolysis-induced kidney injury

被引:1
作者
Kulow, Vera A. [1 ,2 ,3 ]
Labes, Robert [1 ,2 ,3 ]
Czopek, Claudia S. [1 ,2 ,3 ]
Rosenberger, Christian [2 ,3 ,4 ]
Faehling, Michael [1 ,2 ,3 ]
机构
[1] Charite Univ Med Berlin, Inst Translat Physiol CCM, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Med Klin mS Nephrol & Internist Intensivmedizin CC, Charitepl 1, D-10117 Berlin, Germany
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2024年 / 476卷 / 10期
关键词
AKI; Advanced glycation end products; Rhabdomyolysis; Lgals3; Apoptosis; GLYCATION END-PRODUCTS; PATHOGENESIS; INFLAMMATION; RECEPTORS; BIOMARKER; PATHWAY; DISEASE; STRESS;
D O I
10.1007/s00424-024-02987-0
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Advanced glycation endproducts (AGEs) contribute to cellular damage of various pathologies, including kidney diseases. Acute kidney injury (AKI) represents a syndrome seldom characterized by a single, distinct pathophysiological cause. Rhabdomyolysis-induced acute kidney injury (RIAKI) constitutes roughly 15% of AKI cases, yet its underlying pathophysiology remains poorly understood. Using a murine model of RIAKI induced by muscular glycerol injection, we observed elevated levels of AGEs and the AGE receptor galectin-3 (LGALS3) in the kidney. Immunofluorescence localized LGALS3 to distal nephron segments. According to transcriptomic profiling via next-generation sequencing, RIAKI led to profound changes in kidney metabolism, oxidative stress, and inflammation. Cellular stress was evident in both proximal and distal tubules, as shown by kidney injury markers KIM-1 and NGAL. However, only proximal tubules exhibited overt damage and apoptosis, as detected by routine morphology, active Caspase-3, and TUNEL assay, respectively. In vitro, distal convoluted tubule (DCT) cells challenged with AGEs underwent apoptosis, which was markedly enhanced by Lgals3 siRNA treatment. Thus, in RIAKI, the upregulation of LGALS3 may protect the distal nephron from AGE-mediated damage, while proximal tubules lacking LGALS3 stay at risk. Thus, stimulating LGALS3 in the proximal nephron, if achievable, may attenuate RIAKI.
引用
收藏
页码:1571 / 1585
页数:15
相关论文
共 63 条
[1]   One concept does not fit all: the immune system in different forms of acute kidney injury [J].
Anders, Hans-Joachim ;
Wilkens, Louise ;
Schraml, Barbara ;
Marschner, Julian .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2021, 36 (01) :29-38
[2]   Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes [J].
Basta, G ;
Schmidt, AM ;
De Caterina, R .
CARDIOVASCULAR RESEARCH, 2004, 63 (04) :582-592
[3]   UniProt: the universal protein knowledgebase in 2021 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Agivetova, Rahat ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Coetzee, Ray ;
Cukura, Austra ;
Da Silva, Alan ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lock, Antonia ;
Lopez, Rodrigo ;
Luciani, Aurelien ;
Luo, Jie ;
Lussi, Yvonne ;
Mac-Dougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Oliveira, Carla Susana ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Rice, Daniel ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sampson, Joseph .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D480-D489
[4]   Advanced glycation end products and the kidney [J].
Bohlender, JM ;
Franke, S ;
Stein, G ;
Wolf, G .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2005, 289 (04) :F645-F659
[5]   Short- and long-term renal outcomes following severe rhabdomyolysis: a French multicenter retrospective study of 387 patients [J].
Candela, Nelly ;
Silva, Stein ;
Georges, Bernard ;
Cartery, Claire ;
Robert, Thomas ;
Moussi-Frances, Julie ;
Rondeau, Eric ;
Rebibou, Jean-Michel ;
Lavayssiere, Laurence ;
Belliere, Julie ;
Krummel, Thierry ;
Lebas, Celine ;
Cointault, Olivier ;
Sallee, Marion ;
Faguer, Stanislas .
ANNALS OF INTENSIVE CARE, 2020, 10 (01)
[6]   The Role of Galectin-3 in the Kidneys [J].
Chen, Szu-Chia ;
Kuo, Po-Lin .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (04)
[7]   Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation [J].
Chen, Xing ;
Yu, Chunyu ;
Liu, Xinhua ;
Liu, Beibei ;
Wu, Xiaodi ;
Wu, Jiajing ;
Yan, Dong ;
Han, Lulu ;
Tang, Zifan ;
Yuan, Xinyi ;
Wang, Jianqiu ;
Wang, Yue ;
Liu, Shumeng ;
Shan, Lin ;
Shang, Yongfeng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]  
Chen YF, 2015, INT J CLIN EXP PATHO, V8, P53
[9]   RAGE pathway activation and function in chronic kidney disease and COVID-19 [J].
Curran, Colleen S. ;
Kopp, Jeffrey B. .
FRONTIERS IN MEDICINE, 2022, 9
[10]   Shuttling of galectin-3 between the nucleus and cytoplasm [J].
Davidson, PJ ;
Davis, MJ ;
Patterson, RJ ;
Ripoche, MA ;
Poirier, F ;
Wang, JL .
GLYCOBIOLOGY, 2002, 12 (05) :329-337