FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery

被引:5
作者
Alzubaidi, Mahmood [1 ]
Shah, Uzair [1 ]
Agus, Marco [1 ]
Househ, Mowafa [1 ]
机构
[1] Hamad Bin Khalifa Univ, Coll Sci & Engn, Doha 34110, Qatar
来源
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY | 2024年 / 5卷
关键词
Fetal Ultrasound Imaging; Image Segmentation; Prompt-based Learning; Prenatal Diagnostics; Ultrasound Biometrics; LOCALIZATION;
D O I
10.1109/OJEMB.2024.3382487
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 43 条
[41]   TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer [J].
Zhao, Lei ;
Tan, Guanghua ;
Pu, Bin ;
Wu, Qianghui ;
Ren, Hongliang ;
Li, Kenli .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (01) :285-296
[42]   Unsupervised few-shot image classification via one-vs-all contrastive learning [J].
Zheng, Zijun ;
Feng, Xiang ;
Yu, Huiqun ;
Li, Xiuquan ;
Gao, Mengqi .
APPLIED INTELLIGENCE, 2023, 53 (07) :7833-7847
[43]  
Zhou Zongwei, 2018, Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), V11045, P3, DOI [10.1007/978-3-030-00889-5_1, 10.1007/978-3-030-00689-1_1]