FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery

被引:5
作者
Alzubaidi, Mahmood [1 ]
Shah, Uzair [1 ]
Agus, Marco [1 ]
Househ, Mowafa [1 ]
机构
[1] Hamad Bin Khalifa Univ, Coll Sci & Engn, Doha 34110, Qatar
来源
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY | 2024年 / 5卷
关键词
Fetal Ultrasound Imaging; Image Segmentation; Prompt-based Learning; Prenatal Diagnostics; Ultrasound Biometrics; LOCALIZATION;
D O I
10.1109/OJEMB.2024.3382487
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 43 条
[1]  
Alzubaidi M., 2023, P 2022 5 INT C DIG M, P1, DOI [10.1145/3576938.3576939, DOI 10.1145/3576938.3576939]
[2]   Large-scale annotation dataset for fetal head biometry in ultrasound images [J].
Alzubaidi, Mahmood ;
Agus, Marco ;
Makhlouf, Michel ;
Anver, Fatima ;
Alyafei, Khalid ;
Househ, Mowafa .
DATA IN BRIEF, 2023, 51
[3]   Ensemble Transfer Learning for Fetal Head Analysis: From Segmentation to Gestational Age and Weight Prediction [J].
Alzubaidi, Mahmood ;
Agus, Marco ;
Shah, Uzair ;
Makhlouf, Michel ;
Alyafei, Khalid ;
Househ, Mowafa .
DIAGNOSTICS, 2022, 12 (09)
[4]   Toward deep observation: A systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images [J].
Alzubaidi, Mahmood ;
Agus, Marco ;
Alyafei, Khalid ;
Althelaya, Khaled A. ;
Shah, Uzair ;
Abd-Alrazaq, Alaa ;
Anbar, Mohammed ;
Makhlouf, Michel ;
Househ, Mowafa .
ISCIENCE, 2022, 25 (08)
[5]   The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks [J].
Berman, Maxim ;
Triki, Amal Rannen ;
Blaschko, Matthew B. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4413-4421
[6]   Computer-aided lateral ventricular and brain volume measurements in 3D ultrasound for assessing growth trajectories in newborns and neonates [J].
Boucher, Marc-Antoine ;
Lippe, Sarah ;
Dupont, Caroline ;
Knoth, Inga Sophia ;
Lopez, Gabriela ;
Shams, Roozbeh ;
El-Jalbout, Ramy ;
Damphousse, Amelie ;
Kadoury, Samuel .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (22)
[7]   MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation [J].
Cai, Yutong ;
Wang, Yong .
THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
[8]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[9]  
Chen LCE, 2018, PROC EUR C COMPUT VI, V11211, P833, DOI DOI 10.1007/978-3-030-01234-2_49
[10]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587