Positive Solutions for Convective Double Phase Problems

被引:0
作者
Papageorgiou, Nikolao S. [1 ,2 ]
Peng, Zijia [3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
[3] Guangxi Minzu Univ, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Coll Math & Phys, Nanning 530006, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Unbalanced growth; generalized Orlicz spaces; pseudomonotone map; strongly coercive map; truncation; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.1007/s00025-024-02262-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and a reaction that has the competing effects of a parametric concave term and of a convective perturbation. Using truncation and comparison techniques and the theory of nonlinear operators of monotone type, we show that for all small values of the parameter, the problem has a bounded positive solution.
引用
收藏
页数:14
相关论文
共 21 条
[1]   A new class of double phase variable exponent problems: Existence and uniqueness [J].
Crespo-Blanco, Angel ;
Gasinski, Leszek ;
Harjulehto, Petteri ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 :182-228
[2]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[3]   Constant sign solutions for double phase problems with superlinear nonlinearity [J].
Gasinski, Leszek ;
Winkert, Patrick .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[4]   Existence and uniqueness results for double phase problems with convection term [J].
Gasinski, Leszek ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) :4183-4193
[5]   Orlicz Spaces and Generalized Orlicz Spaces [J].
Harjulehto, Petteri ;
Hasto, Peter .
ORLICZ SPACES AND GENERALIZED ORLICZ SPACES, 2019, 2236 :V-+
[6]  
Hartman P., 1960, T AM MATH SOC, V96, P493
[7]   A double phase equation with convection [J].
Liu, Zhenhai ;
Papageorgiou, Nikolaos S. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (91) :1-11
[8]  
MARCELLINI P, 1989, ARCH RATION MECH AN, V105, P267
[9]   REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS [J].
MARCELLINI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :1-30
[10]   Growth conditions and regularity for weak solutions to nonlinear elliptic pdes [J].
Marcellini, Paolo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)