A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:0
|
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 50 条
  • [41] HOPF BIFURCATION IN CAPUTO-HADAMARD FRACTIONAL-ORDER DIFFERENTIAL SYSTEM
    Bounoua, Mohamed Doubbi
    Yin, Chuntao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [42] Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Yang, Jing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (09) : 602 - 606
  • [43] Optimal Static Output Feedback Stabilization of Fractional-Order Systems With Caputo Derivative Order 1 ≤ α < 2
    Lin, Ming-Shue
    Wu, Jenq-Lang
    Yung, Chee-Fai
    IEEE ACCESS, 2023, 11 : 122295 - 122301
  • [44] A Mathematical Study on a Fractional-Order SEIR Mpox Model: Analysis and Vaccination Influence
    Batiha, Iqbal M.
    Abubaker, Ahmad A.
    Jebril, Iqbal H.
    Al-Shaikh, Suha B.
    Matarneh, Khaled
    Almuzini, Manal
    ALGORITHMS, 2023, 16 (09)
  • [45] Dynamics and simulations of discretized Caputo-conformable fractional-order Lotka-Volterra models
    Yousef, Feras
    Semmar, Billel
    Al Nasr, Kamal
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2022, 11 (01): : 100 - 111
  • [46] Numerical Solution for Fractional-Order Mathematical Model of Immune-Chemotherapeutic Treatment for Breast Cancer Using Modified Fractional Formula
    Abu Hammad, Mamon
    Jebril, Iqbal H.
    Alshorm, Shameseddin
    Batiha, Iqbal M.
    Abu Hammad, Nancy
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [47] Numerical study of a new time-fractional Mpox model using Caputo fractional derivatives
    Venkatesh, A.
    Manivel, M.
    Baranidharan, B.
    Shyamsunder
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [48] Some high order formulae for approximating Caputo fractional derivatives
    Ramezani, M.
    Mokhtari, R.
    Haase, G.
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 300 - 318
  • [49] The analysis of fractional-order hepatitis B epidemiological model
    Khan, Tahir
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [50] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    FRACTAL AND FRACTIONAL, 2022, 6 (10)