A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:0
|
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 50 条
  • [31] Impact of skills development on youth unemployment: A fractional-order mathematical model
    Bansal, Komal
    Mathur, Trilok
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14286 - 14303
  • [32] Study of fractional-order alcohol-abuse mathematical model using the concept of piecewise operator
    Sher, Muhammad
    Shah, Kamal
    Sarwar, Muhammad
    Abdallab, Bahaaeldin
    Abdeljawad, Thabet
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (03):
  • [33] Mathematical analysis of a fractional-order epidemic model with nonlinear incidence function
    Djillali, Salih
    Atangana, Abdon
    Zeb, Anwar
    Park, Choonkil
    AIMS MATHEMATICS, 2022, 7 (02): : 2160 - 2175
  • [34] The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach
    Maayah, Banan
    Moussaoui, Asma
    Bushnaq, Samia
    Abu Arqub, Omar
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 963 - 977
  • [35] Caputo-Hadamard Fractional Derivatives of Variable Order
    Almeida, Ricardo
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 1 - 19
  • [36] On discrete fractional-order Lotka-Volterra model based on the Caputo difference discrete operator
    Elsonbaty, Amr
    Elsadany, A. A.
    MATHEMATICAL SCIENCES, 2023, 17 (01) : 67 - 79
  • [37] Stability Analysis of a Fractional-Order Linear System Described by the Caputo-Fabrizio Derivative
    Li, Hong
    Cheng, Jun
    Li, Hou-Biao
    Zhong, Shou-Ming
    MATHEMATICS, 2019, 7 (02)
  • [38] Insight into Caputo Fractional-Order Extension of Lotka-Volterra Model with Emphasis on Immigration Effect
    El-Mesady, A.
    Bazighifan, Omar
    Araci, Serkan
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [39] Dynamic Analysis of Fractional-Order Recurrent Neural Network with Caputo Derivative
    Wang, Weiqian
    Qiao, Yuanhua
    Miao, Jun
    Duan, Lijuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [40] Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
    Gonzalez-Ramirez, Laura R.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16