A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:1
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 51 条
[21]   A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population [J].
Kumar, Pushpendra ;
Govindaraj, V. ;
Erturk, Vedat Suat .
CHAOS SOLITONS & FRACTALS, 2022, 161
[22]   Numerical investigations on COVID-19 model through singular and non-singular fractional operators [J].
Kumar, Sunil ;
Chauhan, R. P. ;
Momani, Shaher ;
Hadid, Samir .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
[23]   A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials [J].
Kumar, Sunil ;
Kumar, Ranbir ;
Osman, M. S. ;
Samet, Bessem .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) :1250-1268
[24]   A study on fractional host-parasitoid population dynamical model to describe insect species [J].
Kumar, Sunil ;
Kumar, Ajay ;
Samet, Bessem ;
Dutta, Hemen .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) :1673-1692
[25]  
Kweyunga EH, 2018, Journal of Advances in Mathematics and Computer Science, V29, P1, DOI [10.9734/jamcs/2018/44336, 10.9734/JAMCS/2018/44336, DOI 10.9734/JAMCS/2018/44336]
[26]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[27]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[28]   Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model [J].
Ma, Weiyuan ;
Zhao, Yanting ;
Guo, Lihong ;
Chen, Yangquan .
ISA TRANSACTIONS, 2022, 124 :144-156
[29]   A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives [J].
Mahatekar, Yogita ;
Scindia, Pallavi S. ;
Kumar, Pushpendra .
PHYSICA SCRIPTA, 2023, 98 (02)
[30]  
Mapinda JJ, 2022, International Journal of Advances in Scientific Research and Engineering, V08, P107, DOI [10.31695/ijasre.2022.8.1.12, 10.31695/ijasre.2022.8.1.12, DOI 10.31695/IJASRE.2022.8.1.12, 10.31695/IJASRE.2022.8.1.12]