A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:1
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 51 条
[1]   Stability and bifurcation analysis of a fractional-order model of cell-to-cell spread of HIV-1 with a discrete time delay [J].
Abbas, Syed ;
Tyagi, Swati ;
Kumar, Pushpendra ;
Erturk, Vedat Suat ;
Momani, Shaher .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) :7081-7095
[2]   Fractional order mathematical modeling of COVID-19 transmission [J].
Ahmad, Shabir ;
Ullah, Aman ;
Al-Mdallal, Qasem M. ;
Khan, Hasib ;
Shah, Kamal ;
Khan, Aziz .
CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
[3]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative [J].
Baleanu, Dumitru ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[6]   Novel Stability Results for Caputo Fractional Differential Equations [J].
Ben Makhlouf, Abdellatif ;
El-Hady, El-Sayed .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[7]  
Bhalekar S., 2011, Journal of Fractional Calculus and Application, V1, P1
[8]  
Buregyeya H., 2014, International Journal of Agriculture Innovations and Research, V2, P636
[9]  
Caputo M, 2016, Progress in Fractional Differentiation and Applications, V2, P1, DOI 10.18576/pfda/020101
[10]   Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version [J].
Etemad, Sina ;
Avci, Ibrahim ;
Kumar, Pushpendra ;
Baleanu, Dumitru ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2022, 162