Research on the grouped orthonormalization method in ghost imaging

被引:1
作者
Yin, Longfei [1 ,2 ]
Liu, Tiantian [1 ]
Mai, Xinlong [1 ]
Sun, Shilun [1 ]
Yin, Pengqi [1 ]
Wu, Guohua [1 ,2 ]
Luo, Bin [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
ghost imaging; orthonormalization; optimal group size;
D O I
10.1088/2040-8986/ad3b18
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ghost imaging (GI) has found application across diverse fields owing to its distinctive benefits. When employing the rotating ground-glass scheme and utilizing second-order correlation for image reconstruction, the efficiency of imaging is hindered by the multiple sampling of reference patterns. To address this, the orthonormalization method has been employed to enhance image quality and reduce the required number of measurements. Despite its effectiveness, the original orthonormalization method is prone to accumulating imaging noise and errors as the number of measurements increases, leading to a significant degradation in image quality. To overcome this limitation, this paper introduces the grouped orthonormalization method (GO-GI) as an extension of the orthonormalization technique. By adjusting the 'group size', this method enables control over the accumulation of errors, resulting in an improvement in image quality. The evaluation of image quality in terms of Contrast-to-Noise demonstrates the significant advantages of the GO-GI method in both simulation and experimental results. This study establishes the GO-GI method as a simple yet practical approach in the realm of GI.
引用
收藏
页数:10
相关论文
共 30 条
[1]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[2]   Optimization of thermal ghost imaging: high-order correlations vs. background subtraction [J].
Chan, Kam Wai C. ;
O'Sullivan, Malcolm N. ;
Boyd, Robert W. .
OPTICS EXPRESS, 2010, 18 (06) :5562-5573
[3]   Ghost spintronic THz-emitter-array microscope [J].
Chen, Si-Chao ;
Feng, Zheng ;
Li, Jiang ;
Tan, Wei ;
Du, Liang-Hui ;
Cai, Jianwang ;
Ma, Yuncan ;
He, Kang ;
Ding, Haifeng ;
Zhai, Zhao-Hui ;
Li, Ze-Ren ;
Qiu, Cheng-Wei ;
Zhang, Xi-Cheng ;
Zhu, Li-Guo .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[4]   Signal-to-noise ratio of Gaussian-state ghost imaging [J].
Erkmen, Baris I. ;
Shapiro, Jeffrey H. .
PHYSICAL REVIEW A, 2009, 79 (02)
[5]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[6]   Ghost imaging with thermal light: Comparing entanglement and classical correlation [J].
Gatti, A ;
Brambilla, E ;
Bache, M ;
Lugiato, LA .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :093602-1
[7]   A method to improve the visibility of ghost images obtained by thermal light [J].
Gong, Wenlin ;
Han, Shensheng .
PHYSICS LETTERS A, 2010, 374 (08) :1005-1008
[8]   Fixed pattern noise reduction for infrared images based on cascade residual attention CNN [J].
Guan, Juntao ;
Lai, Rui ;
Xiong, Ai ;
Liu, Zesheng ;
Gu, Lin .
NEUROCOMPUTING, 2020, 377 :301-313
[9]   Ghost imaging lidar system for remote imaging [J].
Jiang, Teng ;
Bai, Yanfeng ;
Tan, Wei ;
Zhu, Xiaohui ;
Huang, Xianwei ;
Nan, Suqin ;
Fu, Xiquan .
OPTICS EXPRESS, 2023, 31 (09) :15107-15117
[10]   The influence of free-surface vortex on underwater ghost imaging [J].
Jiang, Teng ;
Bai, Yanfeng ;
Tan, Wei ;
Huang, Xianwei ;
Nan, Suqin ;
Fu, Xiquan .
JOURNAL OF OPTICS, 2023, 25 (04)