Smith ideals of operadic algebras in monoidal model categories

被引:1
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 29 条
  • [21] Gabriel-Morita Theory for Excisive Model Categories
    Berger, Clemens
    Ratkovic, Kruna
    APPLIED CATEGORICAL STRUCTURES, 2019, 27 (01) : 23 - 54
  • [22] A variant of a Dwyer-Kan theorem for model categories
    Chorny, Boris
    White, David
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (04): : 2185 - 2208
  • [23] An algebraic model for commutative HZ-algebras
    Richter, Birgit
    Shipley, Brooke
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (04): : 2013 - 2038
  • [24] Formal deformation theory in left-proper model categories
    Manetti, Marco
    Meazzini, Francesco
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 1259 - 1311
  • [25] LEFT AND RIGHT MODEL CATEGORIES AND LEFT AND RIGHT BOUSFIELD LOCALIZATIONS
    Barwick, Clark
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (02) : 245 - 320
  • [26] A Thomason model structure on the category of small n-fold categories
    Fiore, Thomas M.
    Paoli, Simona
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (04): : 1933 - 2008
  • [27] A model categorical approach to group completion of En-algebras
    Stelzer, Manfred
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2012, 7 (02) : 207 - 221
  • [28] Model structure on projective systems of C*-algebras and bivariant homology theories
    Barnea, Ilan
    Joachim, Michael
    Mahanta, Snigdhayan
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 383 - 439
  • [29] THE TWO OUT OF THREE PROPERTY IN IND-CATEGORIES AND A CONVENIENT MODEL CATEGORY OF SPACES
    Barnea, Ilan
    THEORY AND APPLICATIONS OF CATEGORIES, 2017, 32 : 620 - 651