Smith ideals of operadic algebras in monoidal model categories

被引:1
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 29 条
  • [1] Categories of graphs for operadic structures
    Hackney, Philip
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 155 - 212
  • [2] Moduli problems for operadic algebras
    Calaque, Damien
    Campos, Ricardo
    Nuiten, Joost
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3450 - 3544
  • [3] THE FOLK MODEL CATEGORY STRUCTURE ON STRICT ω-CATEGORIES IS MONOIDAL
    Ara, Dimitri
    Lucas, Maxime
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 745 - 808
  • [4] ∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES
    Haugseng, Rune
    Kock, Joachim
    PUBLICACIONS MATEMATIQUES, 2024, 68 (01) : 111 - 137
  • [5] THE SPACE OF TRACES IN SYMMETRIC MONOIDAL INFINITY CATEGORIES
    Steinebrunner, Jan
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04) : 1461 - 1493
  • [6] Genuine versus naïve symmetric monoidal G -categories
    Lenz, Tobias
    DOCUMENTA MATHEMATICA, 2023, 28 : 1079 - 1161
  • [7] Poisson geometry, monoidal Fukaya categories, and commutative Floer cohomology rings
    Pascaleff, James
    ENSEIGNEMENT MATHEMATIQUE, 2024, 70 (3-4): : 313 - 381
  • [8] On the unit of a monoidal model category
    Muro, Fernando
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 37 - 47
  • [9] Tangent categories of algebras over operads
    Harpaz, Yonatan
    Nuiten, Joost
    Prasma, Matan
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 234 (02) : 691 - 742
  • [10] Localization of cofibration categories and groupoid C* -algebras
    Land, Markus
    Nikolaus, Thomas
    Szumilo, Karol
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3007 - 3020