Edge-disjoint properly colored cycles in edge-colored complete graphs

被引:0
作者
Chen, Xiaozheng [1 ]
Li, Luyi [1 ]
Li, Xueliang [1 ]
机构
[1] Nankai Univ, Ctr Combinator & LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-colored complete graph; (Maximum) monochromatic-degree; Properly colored(PC) cycle; Edge-disjoint; ALTERNATING CYCLES; HAMILTON CYCLES;
D O I
10.1016/j.dam.2024.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an edge -colored graph G, let dmon(v) denote the maximum number of edges with the same color incident with a vertex v in G, called the monochromatic -degree of v. The maximum value of dmon(v) over all vertices v E V(G) is called the maximum monochromatic -degree of G, denoted by triangle mon(G). Li et al. in 2019 conjectured that every edge -colored complete graph G of order n with triangle mon(G) <= n - 3k + 1 contains k vertexdisjoint properly colored (PC for short) cycles of length at most 4, and they showed that the conjecture holds for k = 2. Han et al. showed that every edge -colored complete graph G of order n with triangle mon(G) <= n - 2k contains k PC cycles of different lengths. They further got the condition triangle mon(G) <= n - 6 for the existence of two vertex -disjoint PC cycles of different lengths. In this paper, we consider the problems of the existence of edge -disjoint PC cycles of length at most 4 (different lengths) in an edge -colored complete graph G of order n. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 22 条
  • [1] Alon N, 1997, RANDOM STRUCT ALGOR, V11, P179, DOI 10.1002/(SICI)1098-2418(199709)11:2<179::AID-RSA5>3.0.CO
  • [2] 2-P
  • [3] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [4] Arc-disjoint strong spanning subdigraphs of semicomplete compositions
    Bang-Jensen, Jorgen
    Gutin, Gregory
    Yeo, Anders
    [J]. JOURNAL OF GRAPH THEORY, 2020, 95 (02) : 267 - 289
  • [5] Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
  • [6] CYCLES IN DIGRAPHS - A SURVEY
    BERMOND, JC
    THOMASSEN, C
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (01) : 1 - 43
  • [7] Degree Conditions for the Existence of Vertex-Disjoint Cycles and Paths: A Survey
    Chiba, Shuya
    Yamashita, Tomoki
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 1 - 83
  • [8] Color degree and monochromatic degree conditions for short properly colored cycles in edge-colored graphs
    Fujita, Shinya
    Li, Ruonan
    Zhang, Shenggui
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (03) : 362 - 373
  • [9] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &
  • [10] Recent Advances on the Hamiltonian Problem: Survey III
    Gould, Ronald J.
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (01) : 1 - 46