Direct synthesis of iso-olefins from carbon dioxide hydrogenation via tandem catalysis

被引:4
作者
Ji, Qinqin [1 ]
Li, Di [1 ]
Hu, Jingting [1 ]
Gao, Pan [1 ]
Hou, Guangjin [1 ]
Liu, Yanting [1 ,2 ]
Deng, Dehui [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
SKELETAL ISOMERIZATION; SELECTIVE CONVERSION; ZEOLITES; CO2; DEACTIVATION; MECHANISMS; METHANOL; SPHERES; NMR;
D O I
10.1016/j.xcrp.2024.101826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The direct production of iso-olefins using carbon dioxide and hydrogen is a promising alternative to traditional petrochemical routes, but it has not been fully achieved due to the lack of suitable catalysts and processes for the conversion. Herein, we report a tandem process for the direct synthesis of C4 -C7 iso-olefins from carbon dioxide and hydrogen. The process proceeds by hydrogenation of carbon dioxide to C4 -C7 n -olefins over a potassium -doped ferroferric oxide and subsequent selective isomerization to C4 -C7 iso-olefins over a silica -alumina xerogel. A high C4 -C7 iso-olefin selectivity of 35.2% with 37.8% CO2 conversion is obtained. Experiments reveal that the presence of high -density weak Lewis acid sites and the absence of Bronsted acid sites in the silica -aluminum xerogel can inhibit the cracking and hydrogenation of olefin intermediates during isomerization reaction under a hydrogen -rich atmosphere, resulting in the selective formation of C4 -C7 iso-olefins with a 6.9 iso-/n-olefin ratio.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts [J].
Barzetti, T ;
Selli, E ;
Moscotti, D ;
Forni, L .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (08) :1401-1407
[2]   An Overview of Industrial Processes for the Production of Olefins - C-4 Hydrocarbons [J].
Bender, Michael .
CHEMBIOENG REVIEWS, 2014, 1 (04) :136-147
[3]   High-field 19.6T 27Al solid-state MAS NMR of in vitro aluminated brain tissue [J].
Bryant, PL ;
Lukiw, WJ ;
Gan, ZH ;
Hall, RW ;
Butler, LG .
JOURNAL OF MAGNETIC RESONANCE, 2004, 170 (02) :257-262
[4]   Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling [J].
Cheng, Kang ;
Gu, Bang ;
Liu, Xiaoliang ;
Kang, Jincan ;
Zhang, Qinghong ;
Wang, Ye .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (15) :4725-4728
[5]   Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors [J].
Cnudde, Pieter ;
Demuynck, Ruben ;
Vandenbrande, Steven ;
Waroquier, Michel ;
Sastre, German ;
Van Speybroeck, Veronique .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (13) :6007-6017
[6]   Liquid phase synthesis of MTBE from methanol and isobutene over acid zeolites and amberlyst-15 [J].
Collignon, F ;
Loenders, R ;
Martens, JA ;
Jacobs, PA ;
Poncelet, G .
JOURNAL OF CATALYSIS, 1999, 182 (02) :302-312
[7]   Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation [J].
Cui, Xu ;
Gao, Peng ;
Li, Shenggang ;
Yang, Chengguang ;
Liu, Ziyu ;
Wang, Hui ;
Zhong, Liangshu ;
Sun, Yuhan .
ACS CATALYSIS, 2019, 9 (05) :3866-3876
[8]   Mechanisms of the Deactivation of SAPO-34 Materials with Different Crystal Sizes Applied as MTO Catalysts [J].
Dai, Weili ;
Wu, Guangjun ;
Li, Landong ;
Guan, Naijia ;
Hunger, Michael .
ACS CATALYSIS, 2013, 3 (04) :588-596
[9]   Designing a Multifunctional Catalyst for the Direct Production of Gasoline-Range Isoparaffins from CO2 [J].
Dokania, Abhay ;
Ould-Chikh, Samy ;
Ramirez, Adrian ;
Cerrillo, Jose Luis ;
Aguilar, Antonio ;
Russkikh, Artem ;
Alkhalaf, Ahmed ;
Hita, Idoia ;
Bavykina, Anastasiya ;
Shterk, Genrikh ;
Wehbe, Nimer ;
Prat, Alain ;
Lahera, Eric ;
Castano, Pedro ;
Fonda, Emiliano ;
Hazemann, Jean-Louis ;
Gascon, Jorge .
JACS AU, 2021, 1 (11) :1961-1974
[10]   Characteristics of Isohexene as a Novel Promising High-Octane Gasoline Booster [J].
Ershov, Mikhail A. ;
Abdellatief, Tamer M. M. ;
Potanin, Dmitriy A. ;
Klimov, Nikita A. ;
Chernysheva, Elena A. ;
Kapustin, Vladimir M. .
ENERGY & FUELS, 2020, 34 (07) :8139-8149