Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML)

被引:4
作者
Peksen, Murphy M. [1 ]
机构
[1] Tech Univ Munich, Chair Energy Syst, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
来源
HYDROGEN | 2023年 / 4卷 / 03期
关键词
hydrogen; machine learning; sustainability; artificial intelligence; solid oxide cell; r-SOC; pre-reforming; syngas; EXPERIMENTAL VALIDATION; SOFC SYSTEM; BIOMASS GASIFICATION; REFORMING KINETICS; CELL DEGRADATION; COUPLING SOFCS; PRE-REFORMER; FUEL; DESIGN; CFD;
D O I
10.3390/hydrogen4030032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Working towards a more sustainable future with zero emissions, the International Future Laboratory for Hydrogen Economy at the Technical University of Munich (TUM) exhibits concerted efforts across various hydrogen technologies. The current research focuses on pre-reforming processes for high-quality reversible solid oxide cell feedstock preparation. An AI-based machine learning model has been developed, trained, and deployed to predict and optimise the controlled utilisation of methane gas. Using a blend of design of experiments and a validated 3D computational fluid dynamics model, pre-reforming process data have been generated for various syngas mixtures. The results of this study indicate that it is possible to achieve a targeted methane utilisation rate of 20% while decreasing the amount of catalyst material by 11%. Furthermore, it was found that precise process parameters could be determined efficiently and with minimal resource consumption in order to achieve higher methane fuel utilisation rates of 25% and 30%. The machine learning model has been effectively employed to analyse and optimise the fuel outlet conditions of the pre-reforming process, contributing to a better understanding of high-quality syngas preparation and furthering sustainable research efforts for a safe reversible solid oxide cell (r-SOC) process.
引用
收藏
页码:474 / 492
页数:19
相关论文
共 89 条
[1]   The waste heat of a biofuel-powered SOFC for green hydrogen production using thermochemical cycle; Economic, environmental analysis, and tri-criteria optimization [J].
Alnaqi, Abdulwahab A. ;
Alsarraf, Jalal ;
Al-Rashed, Abdullah A. A. A. .
FUEL, 2023, 335
[2]   2D Simulation for CH4Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization [J].
Audasso, Emilio ;
Bianchi, Fiammetta Rita ;
Bosio, Barbara .
ENERGIES, 2020, 13 (16)
[3]   Development of a model evaluation protocol for CFD analysis of hydrogen safety issues the SUSANA project [J].
Baraldi, D. ;
Melideo, D. ;
Kotchourko, A. ;
Ren, K. ;
Yanez, J. ;
Jedicke, O. ;
Giannissi, S. G. ;
Tolias, I. C. ;
Venetsanos, A. G. ;
Keenan, J. ;
Makarov, D. ;
Molkov, V. ;
Slater, S. ;
Verbecke, F. ;
Duclos, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (11) :7633-7643
[4]   Study of SOFC-SOE transition on a RSOFC stack [J].
Barelli, L. ;
Bidini, G. ;
Cinti, G. ;
Ottaviano, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (41) :26037-26047
[5]   SOFC Stack and System Development at Forschungszentrum Julich [J].
Blum, L. ;
Batfalsky, P. ;
Fang, Q. ;
de Haart, L. G. J. ;
Malzbender, J. ;
Margaritis, N. ;
Menzler, N. H. ;
Peters, Ro. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :F1199-F1205
[6]   Long-Term Testing of SOFC Stacks at Forschungszentrum Julich [J].
Blum, L. ;
Packbier, U. ;
Vinke, I. C. ;
de Haart, L. G. J. .
FUEL CELLS, 2013, 13 (04) :646-653
[7]   Comparison of efficiencies of low, mean and high temperature fuel cell Systems [J].
Blum, Ludger ;
Deja, Robert ;
Peters, Roland ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) :11056-11067
[8]   Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review [J].
Calzolari, Giovanni ;
Liu, Wei .
BUILDING AND ENVIRONMENT, 2021, 206
[9]   Pre-reforming of propane for low-temperature SOFCs [J].
Chen, FZ ;
Zha, SW ;
Dong, J ;
Liu, ML .
SOLID STATE IONICS, 2004, 166 (3-4) :269-273
[10]  
Cordiner S., 2006, P INT C FUEL CELL SC