Anatomical and volumetric description of the guiana dolphin (Sotalia guianensis) brain from an ultra-high-field magnetic resonance imaging

被引:2
|
作者
Avelino-de-Souza, Kamilla [1 ,2 ,3 ]
Mynssen, Heitor [1 ,2 ,3 ]
Chaim, Khallil [3 ,4 ]
Parks, Ashley N. [3 ,5 ]
Ikeda, Joana M. P. [6 ]
Cunha, Haydee Andrade [3 ,6 ,7 ]
Mota, Bruno [1 ,2 ,3 ]
Patzke, Nina [3 ,8 ]
机构
[1] Univ Fed Rio Janeiro, Inst Ciencias Biomed, BR-21941590 Rio De Janeiro, Brazil
[2] Univ Fed Rio Janeiro, Lab Biol Teor & Matemat Expt MetaBIO, Inst Fis, BR-21941909 Rio De Janeiro, Brazil
[3] Univ Fed Rio Janeiro, Rede Brasileira Neurobiodiversidade, Inst Fis, BR-21941909 Rio De Janeiro, Brazil
[4] Univ Sao Paulo, Hosp Clin HCFMUSP, Fac Med, LIM44, Sao Paulo, SP, Brazil
[5] SUNY Stony Brook, Renaissance Sch Med, New York, NY USA
[6] Univ Estado Rio De Janeiro, Fac Oceanog, Lab Mmiferos Aquat & Bioindicadores Professora Iza, Rio De Janeiro, Brazil
[7] Univ Estado Rio De Janeiro, Dept Genet, Inst Biol Roberto Alcantara Gomes, Rio De Janeiro, Brazil
[8] Hlth & Med Univ, Inst Mind Brain & Behav, Fac Med, Olymp Weg 1, D-14471 Potsdam, Germany
关键词
Brain evolution; Dolphin brain; MRI; Comparative neuroanatomy; BOTTLE-NOSED-DOLPHIN; WHALE ORCINUS-ORCA; SLOW-WAVE SLEEP; CEREBRAL-CORTEX; TURSIOPS-TRUNCATUS; COMMON DOLPHIN; 3-DIMENSIONAL RECONSTRUCTIONS; LAGENORHYNCHUS-ACUTUS; DELPHINUS-DELPHIS; CORPUS-CALLOSUM;
D O I
10.1007/s00429-024-02789-1
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The Guiana dolphin (Sotalia guianensis) is a common species along Central and South American coastal waters. Although much effort has been made to understand its behavioral ecology and evolution, very little is known about its brain. The use of ultra-high field MRI in anatomical descriptions of cetacean brains is a very promising approach that is still uncommon. In this study, we present for the first time a full anatomical description of the Guiana dolphin's brain based on high-resolution ultra-high-field magnetic resonance imaging, providing an exceptional level of brain anatomical details, and enriching our understanding of the species. Brain structures were labeled and volumetric measurements were delineated for many distinguishable structures, including the gray matter and white matter of the cerebral cortex, amygdala, hippocampus, superior and inferior colliculi, thalamus, corpus callosum, ventricles, brainstem and cerebellum. Additionally, we provide the surface anatomy of the Guiana dolphin brain, including the labeling of main sulci and gyri as well as the calculation of its gyrification index. These neuroanatomical data, absent from the literature to date, will help disentangle the history behind cetacean brain evolution and consequently, mammalian evolution, representing a significant new source for future comparative studies.
引用
收藏
页码:1889 / 1911
页数:23
相关论文
共 50 条
  • [31] Hippocampal Subfields in Acute and Remitted Depression-an Ultra-High Field Magnetic Resonance Imaging Study
    Kraus, Christoph
    Seiger, Rene
    Pfabigan, Daniela M.
    Sladky, Ronald
    Tik, Martin
    Paul, Katharina
    Woletz, Michael
    Gryglewski, Gregor
    Vanicek, Thomas
    Komorowski, Arkadiusz
    Kasper, Siegfried
    Lamm, Claus
    Windischberger, Christian
    Lanzenberger, Rupert
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2019, 22 (08) : 513 - 522
  • [32] Toward High Resolution Images With SQUID-Based Ultra-Low Field Magnetic Resonance Imaging
    Espy, Michelle
    Magnelind, Per
    Matlashov, Andrei
    Newman, Shaun
    Urbaitis, Algis
    Volegov, Petr
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [33] Brain structural plasticity in rats subjected to early binocular enucleation characterized by high resolution anatomical magnetic resonance imaging and diffusion tensor imaging
    Wang, Xuxia
    Lin, Fuchun
    Kang, Yan
    Lei, Hao
    MAGNETIC RESONANCE LETTERS, 2023, 3 (01) : 14 - 21
  • [34] High field magnetic resonance imaging is comparable with gross anatomy for description of the normal appearance of soft tissues in the equine stifle
    Daglish, Jodie
    Frisbie, David D.
    Selberg, Kurt T.
    Barrett, Myra F.
    VETERINARY RADIOLOGY & ULTRASOUND, 2018, 59 (06) : 721 - 736
  • [35] Ultra-high field magnetic resonance imaging parameter mapping in the posterior horn of ex vivo human menisci
    Olsson, E.
    Folkesson, E.
    Peterson, P.
    Onnerfjord, P.
    Tjornstrand, J.
    Hughes, H. V.
    Englund, M.
    Svensson, J.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 (03) : 476 - 483
  • [36] Recent Advances in Lanthanide Based Nano-Architectures as Probes for Ultra High-Field Magnetic Resonance Imaging
    Biju, Silvanose
    Parac-Vogt, Tatjana N.
    CURRENT MEDICINAL CHEMISTRY, 2020, 27 (03) : 352 - 361
  • [37] Neuroanatomy of the equine brain as revealed by high-field (3Tesla) magnetic-resonance-imaging
    Schmidt, Martin J.
    Knemeyer, Carola
    Heinsen, Helmut
    PLOS ONE, 2019, 14 (04):
  • [38] Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging
    Kim, Hee-Kyung
    Baek, Ah Rum
    Choi, Garam
    Lee, Jung-jin
    Yang, Ji-ung
    Jung, Hoesu
    Lee, Taekwan
    Kim, Dongkyu
    Kim, Minsup
    Cho, Art E.
    Lee, Gang Ho
    Chang, Yongmin
    BIOMATERIALS, 2020, 243
  • [39] Improvements in radio-frequency transmission for ultra-high field magnetic resonance imaging through a bilateral monopole antenna
    Kim, Han-Joong
    Heo, Phil
    Han, Sang-Doc
    Kim, Donghyuk
    Song, Hyunwoo
    Kim, Kyoung-Nam
    ELECTROMAGNETICS, 2018, 38 (05) : 283 - 290
  • [40] Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities
    Ibrahim, El-Sayed H.
    Arpinar, V. Emre
    Muftuler, L. Tugan
    Stojanovska, Jadranka
    Nencka, Andrew S.
    Koch, Kevin M.
    WORLD JOURNAL OF RADIOLOGY, 2020, 12 (10):