Artificial intelligence, digital twins and the future of bridge management

被引:0
|
作者
Lorenzen S.R. [1 ]
Berthold H. [1 ]
Rupp M. [1 ]
Schmeiser L. [1 ]
Schneider J. [1 ]
Thiele C.-D. [2 ]
Brötzmann J. [2 ]
Rüppel U. [2 ]
机构
[1] Institut für Statik und Konstruktion, Technische Universität, Darmstadt
[2] Institut für Numerische Methoden und Informatik im Bauwesen, Technische Universität, Darmstadt
来源
VDI Berichte | 2022年 / 2022卷 / 2379期
关键词
Compendex;
D O I
10.51202/9783181023792-109
中图分类号
学科分类号
摘要
The ZEKISS research project, funded by the Federal Ministry of Transport and Digital Infrastructure (BMVI), investigates the combination of direct Structural Health Monitoring (SHM) with indirect SHM for railway bridges and vehicles using Artificial Intelligence (AI) methods, multi-body simulations and finite element model update. Direct SHM refers to the monito-ring/evaluation of the structure with measurements on the structure. Indirect SHM, on the other hand, uses measurements on structures that interact with the structure being monito-red (train measures bridge / bridge measures train). The presentation will give a brief introduction to AI and SHM. Finally, the concept of the Digital Twin for bridge monitoring will be presented in order to show how a uniform data management system for the entire bridge infrastructure network can be created on this basis. In the future, this will enable the imple-mentation of a self-improving system in the context of predictive maintenance. © 2022, VDI Verlag GMBH. All rights reserved.
引用
收藏
页码:109 / 124
页数:15
相关论文
共 50 条
  • [31] Artificial intelligence and collective memory
    Kvasnička, Vladimír
    Pospíchal, Jiří
    Advances in Intelligent Systems and Computing, 2015, 316 : 283 - 291
  • [32] Artificial intelligence-based health management system: Unequally spaced medical data analysis
    Kurasawa, Hisashi
    Fujino, Akinori
    Hayashi, Katsuyoshi
    NTT Technical Review, 2018, 16 (08): : 24 - 28
  • [33] A java approach to robotics and artificial intelligence
    Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, United States
    Java Softw. and Embedded Syst., (123-141):
  • [34] The Profession of IT The Context Problem in Artificial Intelligence
    Denning, Peter J.
    Arquilla, John
    COMMUNICATIONS OF THE ACM, 2022, 65 (12) : 18 - 21
  • [35] Application of Artificial Intelligence in Hydraulic Engineering
    Ma, Chunhui
    Cheng, Lin
    Yang, Jie
    WATER, 2024, 16 (04)
  • [36] Sustainable Mining in the Era of Artificial Intelligence
    Chen, Long
    Xie, Yuting
    Wang, Yutong
    Ge, Shirong
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (01) : 1 - 4
  • [37] The Critical Challenges of Artificial Intelligence in Education
    Saqr, Mohammed
    López-Pernas, Sonsoles
    Conde, Miguel Á.
    Pavlovic, Olga
    Milic, Miroslava Raspopovic
    CEUR Workshop Proceedings, 2023, 3696 : 1 - 3
  • [38] The Path to a Consensus on Artificial Intelligence Assurance
    Freeman, Laura
    Batarseh, Feras A.
    Kuhn, D. Richard
    Raunak, M. S.
    Kacker, Raghu N.
    COMPUTER, 2022, 55 (03) : 82 - 86
  • [40] Artificial intelligence is restructuring a new world
    Xu, Yongjun
    Wang, Fei
    Zhang, Tangtang
    INNOVATION, 2024, 5 (06):