Fractional Matchings in Graphs from the Spectral Radius

被引:0
作者
Chen, Qian-Qian [1 ]
Guo, Ji-Ming [1 ]
Wang, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional matching number; Spectral radius; Graph; Matching number; EIGENVALUES;
D O I
10.1007/s40840-024-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n, \nu <^>*}$$\end{document}(Gn,nu & lowast;& lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}<^>*_{n,\nu <^>*})$$\end{document} the collection of all (connected) graphs of order n having a fractional matching number nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>*$$\end{document}. This paper characterizes the graphs in Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n,\nu <^>*}$$\end{document} and Gn,nu & lowast;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}<^>*_{n,\nu <^>*}$$\end{document} with the maximum spectral radius, and establishes a lower bound for the spectral radius of graphs of order n to guarantee that their fractional matching numbers are at least tau+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau +\frac{1}{2}$$\end{document}. In addition, we explore the relationship between the spectral radius, perfect matching and fractional perfect matching of G. Moreover, we present a spectral condition guaranteeing that the matching number of a graph is at least k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, which generalizes some previous known results.
引用
收藏
页数:14
相关论文
共 17 条
[11]   Spectral Radius and Fractional Perfect Matchings in Graphs [J].
Pan, Yingui ;
Liu, Chang .
GRAPHS AND COMBINATORICS, 2023, 39 (03)
[12]   Signless Laplacian spectral radius and fractional matchings in graphs [J].
Pan, Yingui ;
Li, Jianping ;
Zhao, Wei .
DISCRETE MATHEMATICS, 2020, 343 (10)
[13]  
Scheinerman E., 1997, Fractional Graph Theory: A Rational Approach to the Theory of Graphs
[14]  
STEVANOVIC D., 2015, Spectral Radius of Graphs
[15]   Spectral radius and matchings in graphs [J].
Suil, O. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 :316-324
[16]   Spectral radius and fractional matchings in graphs [J].
Suil, O. .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 55 :144-148
[17]   Fractional matching number and eigenvalues of a graph [J].
Xue, Jie ;
Zhai, Mingqing ;
Shu, Jinlong .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12) :2565-2574