Fractional Matchings in Graphs from the Spectral Radius

被引:0
作者
Chen, Qian-Qian [1 ]
Guo, Ji-Ming [1 ]
Wang, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional matching number; Spectral radius; Graph; Matching number; EIGENVALUES;
D O I
10.1007/s40840-024-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n, \nu <^>*}$$\end{document}(Gn,nu & lowast;& lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}<^>*_{n,\nu <^>*})$$\end{document} the collection of all (connected) graphs of order n having a fractional matching number nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>*$$\end{document}. This paper characterizes the graphs in Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n,\nu <^>*}$$\end{document} and Gn,nu & lowast;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}<^>*_{n,\nu <^>*}$$\end{document} with the maximum spectral radius, and establishes a lower bound for the spectral radius of graphs of order n to guarantee that their fractional matching numbers are at least tau+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau +\frac{1}{2}$$\end{document}. In addition, we explore the relationship between the spectral radius, perfect matching and fractional perfect matching of G. Moreover, we present a spectral condition guaranteeing that the matching number of a graph is at least k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, which generalizes some previous known results.
引用
收藏
页数:14
相关论文
共 17 条
[1]   Eigenvalues and perfect matchings [J].
Brouwer, AE ;
Haemers, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 :155-162
[2]   ON THE SPECTRAL-RADIUS OF COMPLEMENTARY ACYCLIC MATRICES OF ZEROS AND ONES [J].
BRUALDI, RA ;
SOLHEID, ES .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02) :265-272
[3]   On the spectral radius of unicyclic graphs with perfect matchings [J].
Chang, A ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 :237-250
[4]  
Chen XD, 2016, ARS COMBINATORIA, V126, P237
[5]  
Cioaba S.M., 2005, C. R. Math. Acad. Sci. Soc. R. Can., V27, P101
[6]   Large matchings from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :308-317
[7]   Matchings in regular graphs from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. ;
Haemers, Willem H. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) :287-297
[8]   Spectral radius of graphs with given matching number [J].
Feng, Lihua ;
Yu, Guihai ;
Zhang, Xiao-Dong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :133-138
[9]  
Godsil C., 2001, Algebraic Graph Theory, V207
[10]   On the Laplacian spectral radius of a tree [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :379-385