Relationship-Preserving Knowledge Distillation for Zero-Shot Sketch Based Image Retrieval

被引:36
|
作者
Tian, Jialin [1 ,2 ]
Xu, Xing [1 ,2 ]
Wang, Zheng [1 ,2 ,3 ]
Shen, Fumin [1 ,2 ]
Liu, Xin [4 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Sichuan, Peoples R China
[3] UESTC Guangdong, Inst Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China
[4] Huaqiao Univ, Dept Comp Sci, Quanzhou, Peoples R China
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Knowledge Distillation; Sketch-Based Image Retrieval; Zero-shot; Learning;
D O I
10.1145/3474085.3475676
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot sketch-based image retrieval is challenging for the modal gap between distributions of sketches and images and the inconsistency of label spaces during training and testing. Previous methods mitigate the modal gap by projecting sketches and images into a joint embedding space. Most of them also bridge seen and unseen classes by leveraging semantic embeddings, e.g., word vectors and hierarchical similarities. In this paper, we propose RelationshipPreserving Knowledge Distillation (RPKD) to study generalizable embeddings from the perspective of knowledge distillation bypassing the usage of semantic embeddings. In particular, we firstly distill the instance-level knowledge to preserve inter-class relationships without semantic similarities that require extra effort to collect. We also reconcile the contrastive relationships among instances between different embedding spaces, which is complementary to instance-level relationships. Furthermore, embedding-induced supervision, which measures the similarities of an instance to partial class embedding centers from the teacher, is developed to align the student's classification confidences. Extensive experiments conducted on three benchmark ZS-SBIR datasets, i.e., Sketchy, TUBerlin, and QuickDraw, demonstrate the superiority of our proposed RPKD approach comparing to the state-of-the-art methods.
引用
收藏
页码:5473 / 5481
页数:9
相关论文
共 50 条
  • [21] Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval
    Jiao, Shichao
    Han, Xie
    Xiong, Fengguang
    Yang, Xiaowen
    Han, Huiyan
    He, Ligang
    Kuang, Liqun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16) : 13469 - 13483
  • [22] Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval
    Shichao Jiao
    Xie Han
    Fengguang Xiong
    Xiaowen Yang
    Huiyan Han
    Ligang He
    Liqun Kuang
    Neural Computing and Applications, 2022, 34 : 13469 - 13483
  • [23] Deep supervision network with contrastive learning for zero-shot sketch-based retrieval
    Shu, Zhenqiu
    Zhuo, Guangyao
    Yu, Jun
    Yu, Zhengtao
    APPLIED SOFT COMPUTING, 2024, 167
  • [24] Good Teacher Makes Good Student: A Discriminative-Aware Knowledge Preservation Approach for Zero-Shot Sketch-Based Image Retrieval
    Zhao, Haifeng
    Wu, Tianjian
    Tao, Yuting
    Zhang, Yan
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (03) : 364 - 371
  • [25] Augmented Multimodality Fusion for Generalized Zero-Shot Sketch-Based Visual Retrieval
    Jing, Taotao
    Xia, Haifeng
    Hamm, Jihun
    Ding, Zhengming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3657 - 3668
  • [26] Cross-Modal Visual Correspondences Learning Without External Semantic Information for Zero-Shot Sketch-Based Image Retrieval
    Gao, Zhijie
    Wang, Kai
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 342 - 353
  • [27] Knowledge Distillation-Based Zero-Shot Learning for Process Fault Diagnosis
    Liu, Yi
    Huang, Jiajun
    Jia, Mingwei
    ADVANCED INTELLIGENT SYSTEMS, 2024,
  • [28] Knowledge Distillation Classifier Generation Network for Zero-Shot Learning
    Yu, Yunlong
    Li, Bin
    Ji, Zhong
    Han, Jungong
    Zhang, Zhongfei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3183 - 3194
  • [29] A Zero-Shot Sketch-Based Intermodal Object Retrieval Scheme for Remote Sensing Images
    Chaudhuri, Ushasi
    Banerjee, Biplab
    Bhattacharya, Avik
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Cross-Modal Attention Alignment Network with Auxiliary Text Description for Zero-Shot Sketch-Based Image Retrieval
    Su, Hanwen
    Song, Ge
    Huang, Kai
    Wang, Jiyan
    Yang, Ming
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VI, 2024, 15021 : 52 - 65