Photoplethysmography based atrial fibrillation detection: a continually growing field

被引:2
作者
Ding, Cheng [1 ,2 ]
Xiao, Ran [1 ]
Wang, Weijia [1 ]
Holdsworth, Elizabeth [3 ]
Hu, Xiao [1 ,2 ,4 ]
机构
[1] Emory Univ, Nell Hodgson Woodruff Sch Nursing, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Georgia Tech Lib, Atlanta, GA USA
[4] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA 30322 USA
关键词
photoplethysmography; atrial fibrillation; statistic; machine learning; deep learning; ARTIFICIAL-INTELLIGENCE ALGORITHM; PPG SIGNALS; HEART-RATE; CLASSIFICATION; RHYTHM; RISK;
D O I
10.1088/1361-6579/ad37ee
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team previously conducted an exhaustive review on PPG-based AF detection before June 2019. However, since then, more advanced technologies have emerged in this field. Approach. This paper offers a comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December 2022. Through extensive exploration of scientific databases, we have identified 57 pertinent studies. Significance. Our comprehensive review encompasses an in-depth assessment of the statistical methodologies, traditional machine learning techniques, and deep learning approaches employed in these studies. In addition, we address the challenges encountered in the domain of PPG-based AF detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with regular updates on a regular basis.
引用
收藏
页数:29
相关论文
共 93 条
[11]  
Bus S., 2020, PHOTONICS APPL ASTRO, V11581, P360
[12]   Considerations on Performance Evaluation of Atrial Fibrillation Detectors [J].
Butkuviene, Monika ;
Petrenas, Andrius ;
Solosenko, Andrius ;
Martin-Yebra, Alba ;
Marozas, Vaidotas ;
Sornmo, Leif .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (11) :3250-3260
[13]   Atrial fibrillation detection using ambulatory smartwatch photoplethysmography and validation with simultaneous holter recording [J].
Chang, Po-Cheng ;
Wen, Ming-Shien ;
Chou, Chung-Chuan ;
Wang, Chun-Chieh ;
Hung, Kuo-Chun .
AMERICAN HEART JOURNAL, 2022, 247 :55-62
[14]   The 2023 wearable photoplethysmography roadmap [J].
Charlton, Peter H. ;
Allen, John ;
Bailon, Raquel ;
Baker, Stephanie ;
Behar, Joachim A. ;
Chen, Fei ;
Clifford, Gari D. ;
Clifton, David A. ;
Davies, Harry J. ;
Ding, Cheng ;
Ding, Xiaorong ;
Dunn, Jessilyn ;
Elgendi, Mohamed ;
Ferdoushi, Munia ;
Franklin, Daniel ;
Gil, Eduardo ;
Hassan, Md Farhad ;
Hernesniemi, Jussi ;
Hu, Xiao ;
Ji, Nan ;
Khan, Yasser ;
Kontaxis, Spyridon ;
Korhonen, Ilkka ;
Kyriacou, Panicos A. ;
Laguna, Pablo ;
Lazaro, Jesus ;
Lee, Chungkeun ;
Levy, Jeremy ;
Li, Yumin ;
Liu, Chengyu ;
Liu, Jing ;
Lu, Lei ;
Mandic, Danilo P. ;
Marozas, Vaidotas ;
Mejia-Mejia, Elisa ;
Mukkamala, Ramakrishna ;
Nitzan, Meir ;
Pereira, Tania ;
Poon, Carmen C. Y. ;
Ramella-Roman, Jessica C. ;
Saarinen, Harri ;
Shandhi, Md Mobashir Hasan ;
Shin, Hangsik ;
Stansby, Gerard ;
Tamura, Toshiyo ;
Vehkaoja, Antti ;
Wang, Will Ke ;
Zhang, Yuan-Ting ;
Zhao, Ni ;
Zheng, Dingchang .
PHYSIOLOGICAL MEASUREMENT, 2023, 44 (11)
[15]   A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation [J].
Chen, Erdong ;
Jiang, Jie ;
Su, Rui ;
Gao, Meng ;
Zhu, Sainan ;
Zhou, Jing ;
Huo, Yong .
HEART RHYTHM, 2020, 17 (05) :847-853
[16]   Deep Learning With Edge Computing: A Review [J].
Chen, Jiasi ;
Ran, Xukan .
PROCEEDINGS OF THE IEEE, 2019, 107 (08) :1655-1674
[17]   Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity A Scientific Statement From the American Heart Association [J].
Chen, Lin Y. ;
Chung, Mina K. ;
Allen, Larry A. ;
Ezekowitz, Michael ;
Furie, Karen L. ;
McCabe, Pamela ;
Noseworthy, Peter A. ;
Perez, Marco V. ;
Turakhia, Mintu P. .
CIRCULATION, 2018, 137 (20) :E623-E644
[18]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[19]   Atrial Fibrillation Identification With PPG Signals Using a Combination of Time-Frequency Analysis and Deep Learning [J].
Cheng, Peng ;
Chen, Zhencheng ;
Li, Quanzhong ;
Gong, Qiong ;
Zhu, Jianming ;
Liang, Yongbo .
IEEE ACCESS, 2020, 8 :172692-172706
[20]   Continuous Heart Rate Monitoring for Automatic Detection of Life-Threatening Arrhythmias With Novel Bio-Sensing Technology [J].
Chorin, Ehud ;
Hochstadt, Aviram ;
Schwartz, Arie Lorin ;
Matz, Gil ;
Viskin, Sami ;
Rosso, Raphael .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8