Activating and Stabilizing a Reversible four Electron Redox Reaction of I-/I+ for Aqueous Zn-Iodine Battery

被引:42
作者
Wang, Chenggang [1 ]
Ji, Xiaoxing [1 ]
Liang, Jianing [2 ]
Zhao, Shunshun [3 ]
Zhang, Xixi [1 ]
Qu, Guangmeng [4 ]
Shao, Wenfeng [1 ]
Li, Chuanlin [1 ]
Zhao, Gang [1 ]
Xu, Xijin [1 ]
Li, Huiqiao [2 ]
机构
[1] Univ Jinan, Sch Phys & Technol, Jinan 250022, Peoples R China
[2] Huazhong Univ Sci & Technol HUST, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[4] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
four-electron redox; interhalogen activation; interlayer confinement effect; zinc-iodine battery; PERFORMANCE; LIFE; CONVERSION; CHEMISTRY; KINETICS; EXCHANGE;
D O I
10.1002/anie.202403187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low capacity and poor cycle stability greatly inhibit the development of zinc-iodine batteries. Herein, a high-performance Zn-iodine battery has been reached by designing and optimizing both electrode and electrolyte. The Br- is introduced as the activator to trigger I+, and coupled with I+ forming interhalogen to stabilize I+ to achieve a four-electron reaction, which greatly promotes the capacity. And the Ni-Fe-I LDH nanoflowers serve as the confinement host to enable the reactions of I-/I+ occurring in the layer due to the spacious and stable interlayer spacing of Ni-Fe-I LDH, which effectively suppresses the iodine-species shuttle ensuring high cycling stability. As a result, the electrochemical performance is greatly enhanced, especially in specific capacity (as high as 350 mAh g(-1) at 1 A g(-1) far higher than two-electron transfer Zn-iodine batteries) and cycling performance (94.6 % capacity retention after 10000 cycles). This strategy provides a new way to realize high capacity and long-term stability of Zn-iodine batteries.
引用
收藏
页数:8
相关论文
共 53 条
[31]   Boosting aqueous non-flow zinc-bromine batteries with a two-dimensional metal-organic framework host: an adsorption-catalysis approach [J].
Wei, Hua ;
Qu, Guangmeng ;
Zhang, Xiangyong ;
Ren, Baohui ;
Li, Shizhen ;
Jiang, Jingjing ;
Yang, Yihan ;
Yang, Jinlong ;
Zhao, Lingzhi ;
Li, Hongfei ;
Zhi, Chunyi ;
Liu, Zhuoxin .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) :4073-4083
[32]   A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries [J].
Wu, Wanlong ;
Xu, Shicheng ;
Lin, Zirui ;
Lin, Lu ;
He, Ronghuan ;
Sun, Xiaoqi .
ENERGY STORAGE MATERIALS, 2022, 49 :11-18
[33]   Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity [J].
Xie, Yaqiang ;
Pan, Tingting ;
Lei, Qiong ;
Chen, Cailing ;
Dong, Xinglong ;
Yuan, Youyou ;
Shen, Jie ;
Cai, Yichen ;
Zhou, Chunhui ;
Pinnau, Ingo ;
Han, Yu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (41) :22432-22440
[34]  
Xu C., 2012, ANGEW CHEM, V124, P957, DOI [DOI 10.1002/ANGE.201106307, DOI 10.1002/ANIE.201106307]
[35]   Halogen Storage Electrode Materials for Rechargeable Batteries [J].
Xue, Zhiyang ;
Gao, Zhengyuan ;
Zhao, Xiangyu .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) :1155-1179
[36]   Single atom catalysts for triiodide adsorption and fast conversion to boost the performance of aqueous zinc-iodine batteries [J].
Yang, Fuhua ;
Long, Jun ;
Yuwono, Jodie A. ;
Fei, Huifang ;
Fan, Yameng ;
Li, Peng ;
Zou, Jinshuo ;
Hao, Junnan ;
Liu, Sailin ;
Liang, Gemeng ;
Lyu, Yanqiu ;
Zheng, Xiaobo ;
Zhao, Shiyong ;
Davey, Kenneth ;
Guo, Zaiping .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (10) :4630-4640
[37]   Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting [J].
Yang, Na ;
Tang, Chun ;
Wang, Kunyang ;
Du, Gu ;
Asiri, Abdullah M. ;
Sun, Xuping .
NANO RESEARCH, 2016, 9 (11) :3346-3354
[38]   Dendrites in Zn-Based Batteries [J].
Yang, Qi ;
Li, Qing ;
Liu, Zhuoxin ;
Wang, Donghong ;
Guo, Ying ;
Li, Xinliang ;
Tang, Yongchao ;
Li, Hongfei ;
Dong, Binbin ;
Zhi, Chunyi .
ADVANCED MATERIALS, 2020, 32 (48)
[39]   Rechargeable Iodine Batteries: Fundamentals, Advances, and Perspectives [J].
Yang, Shuo ;
Guo, Xun ;
Lv, Haiming ;
Han, Cuiping ;
Chen, Ao ;
Tang, Zijie ;
Li, Xinliang ;
Zhi, Chunyi ;
Li, Hongfei .
ACS NANO, 2022, 16 (09) :13554-13572
[40]   Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts [J].
Yang, Xueya ;
Fan, Huiqing ;
Hu, Fulong ;
Chen, Shengmei ;
Yan, Kang ;
Ma, Longtao .
NANO-MICRO LETTERS, 2023, 15 (01)