A Modular Quantum Compilation Framework for Distributed Quantum Computing

被引:16
作者
Ferrari, Davide [1 ]
Carretta, Stefano [2 ,3 ]
Amoretti, Michele [1 ]
机构
[1] Univ Parma, Dept Engn & Architecture, Quantum Software Lab, I-43124 Parma, Italy
[2] Univ Parma, Dept Math Phys & Comp Sci, I-43124 Parma, Italy
[3] Ist Nazl Fis Nucl, Sez Milano Bicocca, Grp Coll Parma, I-43124 Parma, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2023年 / 4卷
关键词
Qubit; Logic gates; Quantum computing; Quantum circuit; Computer architecture; Network topology; Program processors; Distributed quantum computing (DQC); quantum compilation; quantum Internet; TELEPORTATION; ENTANGLEMENT;
D O I
10.1109/TQE.2023.3303935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For most practical applications, quantum algorithms require large resources in terms of qubit number, much larger than those available with current noisy intermediate-scale quantum processors. With the network and communication functionalities provided by the quantum Internet, distributed quantum computing (DQC) is considered as a scalable approach for increasing the number of available qubits for computational tasks. For DQC to be effective and efficient, a quantum compiler must find the best partitioning for the quantum algorithm and then perform smart remote operation scheduling to optimize Einstein-Podolsky-Rosen (EPR) pair consumption. At the same time, the quantum compiler should also find the best local transformation for each partition. In this article, we present a modular quantum compilation framework for DQC that takes into account both network and device constraints and characteristics. We implemented and tested a quantum compiler based on the proposed framework with some circuits of interest, such as the VQE and QFT ones, considering different network topologies, with quantum processors characterized by heavy-hexagon coupling maps. We also devised a strategy for remote scheduling that can exploit both TeleGate and TeleData operations and tested the impact of using either only TeleGates or both. The evaluation results show that TeleData operations can have a positive impact on the number of consumed EPR pairs, depending on the characteristic of compiled circuit. Meanwhile, choosing a more connected network topology helps reduce the number of layers dedicated to remote operations.
引用
收藏
页数:13
相关论文
共 52 条
[41]   Towards a global quantum network [J].
Simon, Christoph .
NATURE PHOTONICS, 2017, 11 (11) :678-680
[42]  
Sundaram R. G., 2021, 35 INT S DISTRIBUTED, DOI DOI 10.4230/LIPICS.DISC.2021.41
[43]   Distribution of Quantum Circuits Over General Quantum Networks [J].
Sundaram, Ranjani G. ;
Gupta, Himanshu ;
Ramakrishnan, C. R. .
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, :415-425
[44]   Reducing Unitary and Spectator Errors in Cross Resonance with Optimized Rotary Echoes [J].
Sundaresan, Neereja ;
Lauer, Isaac ;
Pritchett, Emily ;
Magesan, Easwar ;
Jurcevic, Petar ;
Gambetta, Jay M. .
PRX QUANTUM, 2020, 1 (02)
[45]   Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits [J].
Takita, Maika ;
Cross, Andrew W. ;
Corcoles, A. D. ;
Chow, Jerry M. ;
Gambetta, Jay M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (18)
[46]   Decoherence-protected quantum gates for a hybrid solid-state spin register [J].
van der Sar, T. ;
Wang, Z. H. ;
Blok, M. S. ;
Bernien, H. ;
Taminiau, T. H. ;
Toyli, D. M. ;
Lidar, D. A. ;
Awschalom, D. D. ;
Hanson, R. ;
Dobrovitski, V. V. .
NATURE, 2012, 484 (7392) :82-86
[47]  
Van Meter R, 2006, CONF PROC INT SYMP C, P354, DOI 10.1145/1150019.1136517
[48]   The Path to Scalable Distributed Quantum Computing [J].
Van Meter, Rodney ;
Devitt, Simon J. .
COMPUTER, 2016, 49 (09) :31-42
[49]  
Van Meter R, 2008, LECT NOTES COMPUT SC, V5106, P105
[50]   Quantum internet: A vision for the road ahead [J].
Wehner, Stephanie ;
Elkouss, David ;
Hanson, Ronald .
SCIENCE, 2018, 362 (6412)