A Modular Quantum Compilation Framework for Distributed Quantum Computing

被引:15
作者
Ferrari, Davide [1 ]
Carretta, Stefano [2 ,3 ]
Amoretti, Michele [1 ]
机构
[1] Univ Parma, Dept Engn & Architecture, Quantum Software Lab, I-43124 Parma, Italy
[2] Univ Parma, Dept Math Phys & Comp Sci, I-43124 Parma, Italy
[3] Ist Nazl Fis Nucl, Sez Milano Bicocca, Grp Coll Parma, I-43124 Parma, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2023年 / 4卷
关键词
Qubit; Logic gates; Quantum computing; Quantum circuit; Computer architecture; Network topology; Program processors; Distributed quantum computing (DQC); quantum compilation; quantum Internet; TELEPORTATION; ENTANGLEMENT;
D O I
10.1109/TQE.2023.3303935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For most practical applications, quantum algorithms require large resources in terms of qubit number, much larger than those available with current noisy intermediate-scale quantum processors. With the network and communication functionalities provided by the quantum Internet, distributed quantum computing (DQC) is considered as a scalable approach for increasing the number of available qubits for computational tasks. For DQC to be effective and efficient, a quantum compiler must find the best partitioning for the quantum algorithm and then perform smart remote operation scheduling to optimize Einstein-Podolsky-Rosen (EPR) pair consumption. At the same time, the quantum compiler should also find the best local transformation for each partition. In this article, we present a modular quantum compilation framework for DQC that takes into account both network and device constraints and characteristics. We implemented and tested a quantum compiler based on the proposed framework with some circuits of interest, such as the VQE and QFT ones, considering different network topologies, with quantum processors characterized by heavy-hexagon coupling maps. We also devised a strategy for remote scheduling that can exploit both TeleGate and TeleData operations and tested the impact of using either only TeleGates or both. The evaluation results show that TeleData operations can have a positive impact on the number of consumed EPR pairs, depending on the characteristic of compiled circuit. Meanwhile, choosing a more connected network topology helps reduce the number of layers dedicated to remote operations.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Quantum Algorithm Implementations for Beginners [J].
Abhijith, J. ;
Adedoyin, Adetokunbo ;
Ambrosiano, John ;
Anisimov, Petr ;
Casper, William ;
Chennupati, Gopinath ;
Coffrin, Carleton ;
Djidjev, Hristo ;
Gunter, David ;
Karra, Satish ;
Lemons, Nathan ;
Lin, Shizeng ;
Malyzhenkov, Alexander ;
Mascarenas, David ;
Mniszewski, Susan ;
Nadiga, Balu ;
O'Malley, Daniel ;
Oyen, Diane ;
Pakin, Scott ;
Prasad, Lakshman ;
Roberts, Randy ;
Romero, Phillip ;
Santhi, Nandakishore ;
Sinitsyn, Nikolai ;
Swart, Pieter J. ;
Wendelberger, James G. ;
Yoon, Boram ;
Zamora, Richard ;
Zhu, Wei ;
Eidenbenz, Stephan ;
Bartschi, Andreas ;
Coles, Patrick J. ;
Vuffray, Marc ;
Lokhov, Andrey Y. .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (04)
[2]   Suppressing quantum errors by scaling a surface code logical qubit [J].
Acharya, Rajeev ;
Aleiner, Igor ;
Allen, Richard ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Basso, Joao ;
Bengtsson, Andreas ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Debroy, Dripto M. ;
Barba, Alexander Del Toro ;
Demura, Sean ;
Dunsworth, Andrew ;
Eppens, Daniel ;
Erickson, Catherine ;
Faoro, Lara ;
Farhi, Edward ;
Fatemi, Reza ;
Burgos, Leslie Flores ;
Forati, Ebrahim ;
Fowler, Austin G. ;
Foxen, Brooks ;
Giang, William ;
Gidney, Craig ;
Gilboa, Dar .
NATURE, 2023, 614 (7949) :676-+
[3]   Entanglement Verification in Quantum Networks With Tampered Nodes [J].
Amoretti, Michele ;
Carretta, Stefano .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (03) :598-604
[4]   Automated distribution of quantum circuits via hypergraph partitioning [J].
Andres-Martinez, Pablo ;
Heunen, Chris .
PHYSICAL REVIEW A, 2019, 100 (03)
[5]   Time-Sliced Quantum Circuit Partitioning for Modular Architectures [J].
Baker, Jonathan M. ;
Duckering, Casey ;
Hoover, Alexander ;
Chong, Frederic T. .
17TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2020 (CF 2020), 2020, :98-107
[6]   When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Van Meter, Rodney ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3808-3833
[7]  
Caleffi M, 2022, Arxiv, DOI arXiv:2212.10609
[8]   The Rise of the Quantum Internet [J].
Caleffi, Marcello ;
Chandra, Daryus ;
Cuomo, Daniele ;
Hassanpour, Shima ;
Cacciapuoti, Angela Sara .
COMPUTER, 2020, 53 (06) :67-72
[9]   Quantum Internet: from Communication to Distributed Computing! [J].
Caleffi, Marcello ;
Cacciapuoti, Angela Sara ;
Bianchi, Giuseppe .
ACM NANOCOM 2018: 5TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, 2018,
[10]   Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits [J].
Chamberland, Christopher ;
Zhu, Guanyu ;
Yoder, Theodore J. ;
Hertzberg, Jared B. ;
Cross, Andrew W. .
PHYSICAL REVIEW X, 2020, 10 (01)