Comprehensive analysis of optimal power flow using recent metaheuristic algorithms

被引:3
作者
Diab, Ahmed A. Zaki [1 ]
Abdelhamid, Ashraf M. [2 ]
Sultan, Hamdy M. [1 ]
机构
[1] Minia Univ, Fac Engn, Dept Elect Engn, Al Minya 61111, Egypt
[2] Umm Al Qura Univ, Coll Engn, Elect & Commun Engn Dept, Al Lith Branch, Mecca, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Metaheuristics; Optimal power flow; Fuel cost; Voltage profile; Voltage stability; Energy; BIOGEOGRAPHY-BASED OPTIMIZATION; LEARNING-BASED OPTIMIZATION; BEE COLONY ALGORITHM; VOLTAGE STABILITY; COST; EMISSION; CONSTRAINTS;
D O I
10.1038/s41598-024-58565-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper provides six metaheuristic algorithms, namely Fast Cuckoo Search (FCS), Salp Swarm Algorithm (SSA), Dynamic control Cuckoo search (DCCS), Gradient-Based Optimizer (GBO), Northern Goshawk Optimization (NGO), Opposition Flow Direction Algorithm (OFDA) to efficiently solve the optimal power flow (OPF) issue. Under standard and conservative operating settings, the OPF problem is modeled utilizing a range of objectives, constraints, and formulations. Five case studies have been conducted using IEEE 30-bus and IEEE 118-bus standard test systems to evaluate the effectiveness and robustness of the proposed algorithms. A performance evaluation procedure is suggested to compare the optimization techniques' strength and resilience. A fresh comparison methodology is created to compare the proposed methodologies with other well-known methodologies. Compared to previously reported optimization algorithms in the literature, the obtained results show the potential of GBO to solve various OPF problems efficiently.
引用
收藏
页数:62
相关论文
共 50 条
  • [31] Optimal power flow by intelligent algorithms
    Younes, Mimoun
    Rahli, Mostefa
    Abid, Mohamed
    Kandouci, Malika
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2007, 52 (01): : 3 - 12
  • [32] Optimal design of truss domes with frequency constraints using seven metaheuristic algorithms incorporating a comprehensive statistical assessment
    Abbasi, Mohammadtaher
    Zakian, Pooya
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (30) : 12533 - 12559
  • [33] Optimal power flow using Teaching-Learning-Based Optimization technique
    Bouchekara, H. R. E. H.
    Abido, M. A.
    Boucherma, M.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2014, 114 : 49 - 59
  • [34] Faster evolutionary algorithm based optimal power flow using incremental variables
    Reddy, S. Surender
    Bijwe, P. R.
    Abhyankar, A. R.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 54 : 198 - 210
  • [35] Optimal Power Flow Using an Improved Electromagnetism-like Mechanism Method
    Bouchekara, Houssem Rafik El-Hana
    Abido, Mohammad Ali
    Chaib, Alla Eddine
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2016, 44 (04) : 434 - 449
  • [36] Optimal Power Flow using Glowworm Swarm Optimization
    Reddy, Salkuti Surender
    Rathnam, Ch Srinivasa
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 80 : 128 - 139
  • [37] Optimal power flow using recent red-tailed hawk optimization algorithm
    Nassef, Ahmed M.
    Abdelkareem, Mohammad Ali
    Louzazni, Mohamed
    [J]. RESULTS IN ENGINEERING, 2025, 25
  • [38] Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow
    Saha, Anulekha
    Das, Priyanath
    Chakraborty, Ajoy Kumar
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2017, 20 (06): : 1540 - 1552
  • [39] Quantum-inspired metaheuristic algorithms: comprehensive survey and classification
    Gharehchopogh, Farhad Soleimanian
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5479 - 5543
  • [40] PowerModelsADA: A Framework for Solving Optimal Power Flow Using Distributed Algorithms
    Alkhraijah, Mohannad
    Harris, Rachel
    Coffrin, Carleton
    Molzahn, Daniel K.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 2357 - 2360