Synchronization rates and limit laws for random dynamical systems

被引:0
|
作者
Gelfert, Katrin [1 ]
Salcedo, Graccyela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941 Rio De Janeiro, Brazil
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, ul Chopina 12-18, PL-87100 Torun, Poland
关键词
Random dynamical systems; Iterated function systems; Local contraction; Synchronization; Strong law of large numbers; Central limit theorem; Law of iterated logarithm; Large deviations of Lyapunov exponents; ITERATED FUNCTION SYSTEMS; INVARIANCE-PRINCIPLE; MARKOV-PROCESSES; THEOREM; LOGARITHM; STABILITY;
D O I
10.1007/s00209-024-03571-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study general random dynamical systems of continuous maps on some compact metricspace. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers,and the law of the iterated logarithm. Moreover, we study exponential synchronization andsynchronization on average. In the particular case of iterated function systems onS1,we analyze synchronization rates and describe their large deviations. In the case of C1+beta-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Limit Laws for Sums of Independent Random Products: the Lattice Case
    Zakhar Kabluchko
    Journal of Theoretical Probability, 2012, 25 : 424 - 437
  • [42] Synchronization in networks of initially independent dynamical systems
    Liu, Yong
    Ren, Guodong
    Zhou, Ping
    Hayat, Tasawar
    Ma, Jun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 520 : 370 - 380
  • [43] Synchronization and Non-Smooth Dynamical Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) : 1 - 12
  • [44] Limit laws for sums of products of exponentials ofiid random variables
    Michael Cranston
    Stanislav Molchanov
    Israel Journal of Mathematics, 2005, 148 : 115 - 136
  • [45] Dissipative synchronization of nonautonomous and random systems
    Kloeden, P.E.
    Pavani, R.
    GAMM Mitteilungen, 2009, 32 (01) : 80 - 92
  • [46] Limit Laws for Sums of Independent Random Products: the Lattice Case
    Kabluchko, Zakhar
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (02) : 424 - 437
  • [47] Synchronization and cryptography using chaotic dynamical systems
    Chis, O.
    Opris, D.
    BSG PROCEEDINGS 16, 2009, 16 : 47 - 56
  • [48] Synchronization of non-chaotic dynamical systems
    Bagnoli, F
    Cecconi, F
    PHYSICS LETTERS A, 2001, 282 (1-2) : 9 - 17
  • [49] Synchronization and Non-Smooth Dynamical Systems
    Jaume Llibre
    Paulo R. da Silva
    Marco A. Teixeira
    Journal of Dynamics and Differential Equations, 2012, 24 : 1 - 12
  • [50] Limit laws for sums of products of exponentials of iid random variables
    Cranston, M
    Molchanov, S
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 115 - 136