Synchronization rates and limit laws for random dynamical systems

被引:0
|
作者
Gelfert, Katrin [1 ]
Salcedo, Graccyela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941 Rio De Janeiro, Brazil
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, ul Chopina 12-18, PL-87100 Torun, Poland
关键词
Random dynamical systems; Iterated function systems; Local contraction; Synchronization; Strong law of large numbers; Central limit theorem; Law of iterated logarithm; Large deviations of Lyapunov exponents; ITERATED FUNCTION SYSTEMS; INVARIANCE-PRINCIPLE; MARKOV-PROCESSES; THEOREM; LOGARITHM; STABILITY;
D O I
10.1007/s00209-024-03571-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study general random dynamical systems of continuous maps on some compact metricspace. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers,and the law of the iterated logarithm. Moreover, we study exponential synchronization andsynchronization on average. In the particular case of iterated function systems onS1,we analyze synchronization rates and describe their large deviations. In the case of C1+beta-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Synchronization of chaotic dynamical systems
    Shyam K. Joshi
    International Journal of Dynamics and Control, 2021, 9 : 1285 - 1302
  • [22] Lyapunov regularity for random dynamical systems
    Chu, Jifeng
    Zhu, Hailong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (05): : 671 - 687
  • [23] Synchronization of switch dynamical systems
    Danca, MF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1813 - 1826
  • [24] A theory for synchronization of dynamical systems
    Luo, Albert Q.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1901 - 1951
  • [25] SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS
    Kloeden, Peter E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [26] Concepts of synchronization in dynamical systems
    Yang, XS
    PHYSICS LETTERS A, 1999, 260 (05) : 340 - 344
  • [27] Extreme Value Laws for non stationary processes generated by sequential and random dynamical systems
    Moreira Freitas, Ana Cristina
    Freitas, Jorge Milhazes
    Vaienti, Sandro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1341 - 1370
  • [28] ON THE GLOBAL ATTRACTIVITY OF MONOTONE RANDOM DYNAMICAL SYSTEMS
    Cao, Feng
    Jiang, Jifa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) : 891 - 898
  • [29] LINEARIZATION AND LOCAL STABILITY OF RANDOM DYNAMICAL SYSTEMS
    Evstigneev, Igor V.
    Pirogov, Sergey A.
    Schenk-Hoppe, Klaus R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 1061 - 1072
  • [30] Synchronization of discrete time dynamical systems
    Kloeden, PE
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (13-15) : 1133 - 1138