Ocean eddy detection based on YOLO deep learning algorithm by synthetic aperture radar data

被引:13
作者
Zi, Nannan [1 ,4 ,5 ]
Li, Xiao-Ming [2 ,3 ]
Gade, Martin [6 ]
Fu, Han [7 ]
Min, Sisi [1 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Wenchang 571333, Peoples R China
[3] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475001, Peoples R China
[4] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Univ Hamburg, Inst Meereskunde, Bundesstr 53, D-20146 Hamburg, Germany
[7] Beijing Inst Satellite Informat Engn, State Key Lab Space Ground Integrated Informat Tec, Beijing 100086, Peoples R China
关键词
Ocean eddy; Synthetic aperture radar; Deep learning; MESOSCALE EDDIES; SATELLITE; SAR; DYNAMICS;
D O I
10.1016/j.rse.2024.114139
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean eddies play a crucial role in the global energy cycle and significantly impact the transport of heat, salt, and nutrients in the global ocean. Spaceborne synthetic aperture radar (SAR), with its high spatial resolution (O(20 m)) and wide coverage, is an important tool for studying ocean eddies. In this paper, we propose a deep-learning network, named EOLO, to automatically detect ocean Eddies observed in C-band spaceborne SAR imagery, based on the You-Only-Look-Once (YOLO) deep learning algorithm. A Sentinel-1 (S1) SAR data-based ocean eddy dataset (named EddyDataset) is established to train the EOLO network. To effectively improve the performance of the EOLO network, we introduced a channel attention mechanism, adopted the up-sampling operator with the larger receptive field, and improved feature fusion method, anchor box size, and loss function. With the support of a high-performance detection network, the geographic information extraction module based on the affine geographic transformation model and a data preprocessing module were added, making EOLO an applicationlevel framework. Our experiment results on EddyDataset demonstrate that EOLO achieves a high quality of eddy detection with 91.5% average precision. We further applied EOLO to entire scenes of S1 images to detect eddies in the Red Sea, the Baltic Sea, and the Western Mediterranean Sea, achieving 96.6%, 98.8% and 98.9% precision, respectively. Moreover, EOLO was used to extract size and location information of ocean eddies based on 6135 S1 scenes acquired in 2021 over the Western Mediterranean Sea. Their spatial characteristics were derived and compared with the eddies extracted from radar altimeter data, presenting interesting discrepancies between sub-mesoscale and mesoscale eddies in the ocean.
引用
收藏
页数:20
相关论文
共 66 条
[1]   SLICING AIDED HYPER INFERENCE AND FINE-TUNING FOR SMALL OBJECT DETECTION [J].
Akyon, Fatih Cagatay ;
Altinuc, Sinan Onur ;
Temizel, Alptekin .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :966-970
[2]   THE DAMPING OF OCEAN WAVES BY SURFACE-FILMS - A NEW LOOK AT AN OLD PROBLEM [J].
ALPERS, W ;
HUHNERFUSS, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C5) :6251-6265
[3]   A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data [J].
Alpers, Werner ;
Brandt, Peter ;
Lazar, Alban ;
Dagorne, Dominique ;
Sow, Bamol ;
Faye, Saliou ;
Hansen, Morten W. ;
Rubino, Angelo ;
Poulain, Pierre-Marie ;
Brehmer, Patrice .
REMOTE SENSING OF ENVIRONMENT, 2013, 129 :132-143
[4]   Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products? [J].
Amores, Angel ;
Jorda, Gabriel ;
Arsouze, Thomas ;
Le Sommer, Julien .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (10) :7220-7236
[5]   SAR Imagery for Detecting Sea Surface Slicks: Performance Assessment of Polarization-Dependent Parameters [J].
Angelliaume, Sebastien ;
Dubois-Fernandez, Pascale C. ;
Jones, Cathleen E. ;
Holt, Benjamin ;
Minchew, Brent ;
Amri, Emna ;
Miegebielle, Veronique .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4237-4257
[6]   Eddies in the North Greenland Sea and Fram Strait From Satellite Altimetry, SAR and High-Resolution Model Data [J].
Bashmachnikov, Igor L. ;
Kozlov, Igor E. ;
Petrenko, Larisa A. ;
Glok, Natalia, I ;
Wekerle, Claudia .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (07)
[7]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934]
[8]   Global observations of large oceanic eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. ;
de Szoeke, Roland A. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (15)
[9]   The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll [J].
Chelton, Dudley B. ;
Gaube, Peter ;
Schlax, Michael G. ;
Early, Jeffrey J. ;
Samelson, Roger M. .
SCIENCE, 2011, 334 (6054) :328-332
[10]   Global observations of nonlinear mesoscale eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) :167-216