Photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes to promote PD-L1 multivalent binding for effective immune checkpoint blockade therapy

被引:13
作者
Lee, Youngjoo [1 ,2 ]
Song, Sukyung [3 ]
Yang, Suah [1 ,2 ]
Kim, Jinseong [1 ,2 ]
Moon, Yujeong [1 ,4 ]
Shim, Nayeon [3 ]
Yoon, Hong Yeol [2 ]
Kim, Sehoon [1 ,2 ]
Shim, Man Kyu [2 ]
Kim, Kwangmeyung [3 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Med Mat Res Ctr, Biomed Res Div, Seoul 02792, South Korea
[3] Ewha Womans Univ, Coll Pharm, Grad Sch Pharmaceut Sci, Seoul 03760, South Korea
[4] Korea Univ, Dept Bioengn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Cancer immunotherapy; Immune checkpoint blockade; PEGylated liposome; Crosslinked lipid nanoparticles; Anti-PD-L1; peptide; Tumor-targeting; PD-L1 multivalent binding; Lysosomal PD-L1 degradation; RECEPTOR;
D O I
10.1016/j.apsb.2023.09.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Immune checkpoint blockade (ICB) therapy targeting PD-L1 via monoclonal antibody (mAb) has shown extensive clinical benefits in the diverse types of advanced malignancies. However, most patients are completely refractory to ICB therapy owing to the PD-L1 recycling mechanism. Herein, we propose photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes (immune checkpoint blockade liposomes; ICB-LPs) to promote PD-L 1 multivalent binding for inducing lysosomal degradation of PD-L1 in tumor cells. The ICB-LPs are prepared by formulation of DC8,9PC with photo-polymerized diacetylenic moiety, 1,2-dipalmitoylphosphatidylcholine (DPPC) and anti-PD-L1 peptide (D-form NYSKPTDRQYHF)-conjugated DSPE-PEG2k (anti-PD-L1-DSPE-PEG2k) in a molar ratio of 45:45:10, followed by cross-linking of liposomal bilayer upon UV irradiation. The 10 mol% antiPD-L1-DSPE-PEG2k incorporated ICB-LPs have a nano-sized lipid bilayer structure with an average diameter of 137.7 +/- 1.04 nm, showing a high stability in serum condition. Importantly, the ICB-LPs efficiently promote the multivalent binding with PD -L1 on the tumor cell membrane, which are endocytosed with aim to deliver PD -L1 to the lysosomes, wherein the durable PD -L1 degradation is observed for 72 h, in contrast to anti PD -L1 mAbs showing the rapid PD -L1 recycling within 9 h. The in vitro coculture experiments with CD8 thorn T cells show that ICB-LPs effectively enhance the T cell -mediated antitumor immune responses against tumor cells by blocking the PD-L1/PD-1 axis. When ICB-LPs are intravenously injected into colon tumor -bearing mice, they efficiently accumulate within the targeted tumor tissues via both passive and active tumor targeting, inducing a potent T cell -mediated antitumor immune response by effective and durable PD -L1 degradation. Collectively, this study demonstrates the superior antitumor efficacy of crosslinked and anti -PD -L1 peptide incorporated liposome formulation that promotes PD -L1 multivalent binding for trafficking of PD -L1 toward the lysosomes instead of the recycling endosomes. 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under the CC BY -NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1428 / 1440
页数:13
相关论文
共 27 条
[1]   Immune checkpoint blockade in hematologic malignancies [J].
Armand, Philippe .
BLOOD, 2015, 125 (22) :3393-3400
[2]   Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology [J].
Bertrand, Nicolas ;
Wu, Jun ;
Xu, Xiaoyang ;
Kamaly, Nazila ;
Farokhzad, Omid C. .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 66 :2-25
[3]   An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy [J].
Bu, Jiyoon ;
Nair, Ashita ;
Iida, Mari ;
Jeong, Woo-Jin ;
Poellmann, Michael J. ;
Mudd, Kara ;
Kubiatowicz, Luke J. ;
Liu, Elizabeth W. ;
Wheeler, Deric L. ;
Hong, Seungpyo .
NANO LETTERS, 2020, 20 (07) :4901-4909
[4]   CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity [J].
Burr, Marian L. ;
Sparbier, Christina E. ;
Chan, Yih-Chih ;
Williamson, James C. ;
Woods, Katherine ;
Beavis, Paul A. ;
Lam, Enid Y. N. ;
Henderson, Melissa A. ;
Bell, Charles C. ;
Stolzenburg, Sabine ;
Gilan, Omer ;
Bloor, Stuart ;
Noori, Tahereh ;
Morgens, David W. ;
Bassik, Michael C. ;
Neeson, Paul J. ;
Behren, Andreas ;
Darcy, Phillip K. ;
Dawson, Sarah-Jane ;
Voskoboinik, Ilia ;
Trapani, Joseph A. ;
Cebon, Jonathan ;
Lehner, Paul J. ;
Dawson, Mark A. .
NATURE, 2017, 549 (7670) :101-105
[5]   The photopolymerization of DC8,9PC in microbubbles [J].
Callens, Maarten ;
Beltrami, Marco ;
D'Agostino, Emiliano ;
Pfeiffer, Helge ;
Verellen, Dirk ;
Paradossi, Gaio ;
Van Den Abeele, Koen .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 568 :371-380
[6]   Mechanisms Controlling PD-L1 Expression in Cancer [J].
Cha, Jong-Ho ;
Chan, Li-Chuan ;
Li, Chia-Wei ;
Hsu, Jennifer L. ;
Hung, Mien-Chie .
MOLECULAR CELL, 2019, 76 (03) :359-370
[7]   Blocking of the PD-1/PD-L1 Interaction by a D-Peptide Antagonist for Cancer Immunotherapy [J].
Chang, Hao-Nan ;
Liu, Bei-Yuan ;
Qi, Yun-Kun ;
Zhou, Yang ;
Chen, Yan-Ping ;
Pan, Kai-Mai ;
Li, Wen-Wen ;
Zhou, Xiu-Man ;
Ma, Wei-Wei ;
Fu, Cai-Yun ;
Qi, Yuan-Ming ;
Liu, Lei ;
Gao, Yan-Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (40) :11760-11764
[8]   Anticancer nanocage platforms for combined immunotherapy designed to harness immune checkpoints and deliver anticancer drugs [J].
Jeon, In Seon ;
Yoo, Jae Do ;
Gurung, Smriti ;
Kim, Minseong ;
Lee, Chanju ;
Park, Eun Jung ;
Park, Rang-Woon ;
Lee, Byungheon ;
Kim, Soyoun .
BIOMATERIALS, 2021, 270
[9]   Roles of IFN-γ in tumor progression and regression: a review [J].
Jorgovanovic, Dragica ;
Song, Mengjia ;
Wang, Liping ;
Zhang, Yi .
BIOMARKER RESEARCH, 2020, 8 (01)
[10]   Tumour-intrinsic resistance to immune checkpoint blockade [J].
Kalbasi, Anusha ;
Ribas, Antoni .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (01) :25-39