ML-Based Forecasting of Temporal Dynamics in Luminescence Spectra of Ag2S Colloidal Quantum Dots

被引:2
作者
Malashin, Ivan P. [1 ]
Daibagya, Daniil S. [2 ,3 ]
Tynchenko, Vadim S. [1 ,4 ]
Nelyub, Vladimir A. [1 ,5 ]
Borodulin, Aleksei S. [1 ]
Gantimurov, Andrei P. [1 ]
Ambrozevich, Sergey A. [2 ,3 ]
Selyukov, Alexandr S. [2 ,3 ]
机构
[1] Bauman Moscow State Tech Univ, Artificial Intelligence Technol Sci & Educ Ctr, Moscow 105005, Russia
[2] Bauman Moscow State Tech Univ, Fac Fundamental Sci, Moscow 105005, Russia
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Reshetnev Siberian State Univ Sci & Technol, Inst Comp Sci & Telecommun, Informat Control Syst Dept, Krasnoyarsk 660037, Russia
[5] Far Eastern Fed Univ, Sci Dept, Vladivostok 690922, Russia
关键词
Ag; ₂S; luminescence; machine learning; prediction; quantum dots; temporal dynamics; time series; OPTICAL-PROPERTIES; REGRESSION; PERFORMANCE;
D O I
10.1109/ACCESS.2024.3387024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study delves into the temporal dynamics of luminescence in colloidal $Ag_{2}S$ quantum dots, utilizing time series forecasting techniques. Through an analysis of intensity measurements taken at different time intervals, it uncovers temporal trends and utilizes predictive models to anticipate future behaviour of luminescence spectra. The outcomes contribute to a more profound understanding of optimizing experimental conditions and foreseeing the evolution of these nanomaterials over time. Among the tested models, the most robust and effective approaches for predicting the decay of integral intensity within the first hour include polynomial features with regressors, particularly ElasticNetCV, Ridge, and Lasso, with $R<^>{2}$ scores of 0.74, 0.82, and 0.80, respectively. However, upon comparison with the results of additional experiment conducted over a duration of two hours, the Ridge model demonstrated the best performance in predicting the decay of integral intensity.
引用
收藏
页码:53320 / 53334
页数:15
相关论文
共 99 条
[1]   Non-Invasive Estimation of Hemoglobin Using a Multi-Model Stacking Regressor [J].
Acharya, Soumyadipta ;
Swaminathan, Dhivya ;
Das, Sreetama ;
Kansara, Krity ;
Chakraborty, Sushovan ;
Kumar, Dinesh R. ;
Francis, Tony ;
Aatre, Kiran R. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (06) :1717-1726
[2]  
Al Daoud E., 2019, International Journal of Computer and Information Engineering, V13, P6, DOI [10.5281/zenodo.3607805, DOI 10.5281/ZENODO.3607805]
[3]  
Ali S., 2023, Environ. Res., V232
[4]  
Arora Mohit, 2021, Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), P211, DOI 10.1109/ICIEM51511.2021.9445345
[5]  
Atilgan S. R., Anisotropy of fluctuation dynamics of proteins with an elasticnetwork model
[6]   Controlling the optical and mechanical properties of polyvinyl alcohol using Ag2S semiconductor for environmentally friendly applications [J].
Badawi, Ali ;
Alharthi, Sami S. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 116
[7]   Effect of the non-toxic Ag2S quantum dots size on their optical properties for environment-friendly applications [J].
Badawi, Ali .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 109 :107-113
[8]   Quantum dots in biology and medicine [J].
Bailey, RE ;
Smith, AM ;
Nie, SM .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 25 (01) :1-12
[9]   Robust Support Vector Regression in Primal with Asymmetric Huber Loss [J].
Balasundaram, S. ;
Meena, Yogendra .
NEURAL PROCESSING LETTERS, 2019, 49 (03) :1399-1431
[10]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350