Application of a Hybrid Improved Particle Swarm Algorithm for Prediction of Cutting Energy Consumption in CNC Machine Tools
被引:2
作者:
Du, Jidong
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R ChinaJiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R China
Du, Jidong
[1
]
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R ChinaJiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R China
Wang, Yan
[1
]
Ji, Zhicheng
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R ChinaJiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R China
Ji, Zhicheng
[1
]
机构:
[1] Jiangnan Univ, Sch Engn Res Ctr Internet Things Technol Applicat, Minist Educ, Wuxi 214122, Peoples R China
Estimation and analysis of energy consumption for machine tool is the basis of energy efficiency improvement. To improve the accuracy of ELM algorithm in CNC machine tool energy consumption prediction, a prediction method based on an improved particle swarm optimization (CAPSO) algorithm and an extreme learning machine (ELM) is proposed. The contribution of the algorithm includes the following three aspects. First, sobol sequence is used to initialize the PSO population to make distribution of initial population more even in solution space. Second, the center wanders and boundary neighborhood updates strategy are used to improve the population quality and convergence rate of PSO. Then, to avoid the optimal local solution, the adaptive inertia weight is introduced to achieve the stochastic perturbation of the population. The performance of the algorithm is tested by ten benchmark function, indicating that the CAPSO ensures the search accuracy and improves the algorithm's convergence rate. Finally, the CAPSO algorithm is used to optimize the weights and thresholds of an ELM, and the CAPSO-ELM cutting energy consumption prediction model is established. Case analysis and comparative experiments show that the stability, prediction accuracy and generalization ability of CAPSO-ELM model are better than those of other models.
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Hu, Shih-Cheng
Lin, Tee
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Lin, Tee
Huang, Shao-Huan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Huang, Shao-Huan
Fu, Ben-Ran
论文数: 0引用数: 0
h-index: 0
机构:
Ming Chi Univ Technol, Dept Mech Engn, New Taipei 243, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Fu, Ben-Ran
Hu, Ming-Hsuan
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol KTH, Dept Energy Technol, Stockholm, SwedenNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Hu, Shih-Cheng
Lin, Tee
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Lin, Tee
Huang, Shao-Huan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Huang, Shao-Huan
Fu, Ben-Ran
论文数: 0引用数: 0
h-index: 0
机构:
Ming Chi Univ Technol, Dept Mech Engn, New Taipei 243, TaiwanNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
Fu, Ben-Ran
Hu, Ming-Hsuan
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol KTH, Dept Energy Technol, Stockholm, SwedenNatl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan