Trajectory Unified Transformer for Pedestrian Trajectory Prediction

被引:38
作者
Shi, Liushuai [1 ]
Wang, Le [1 ]
Zhou, Sanping [1 ]
Hua, Gang [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Natl Engn Res Ctr Visual Informat & Applicat, Natl Key Lab Human Machine Hybrid Augmented Intel, Xian, Peoples R China
[2] Wormpex AI Res, Bellevue, WA USA
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
基金
国家重点研发计划;
关键词
D O I
10.1109/ICCV51070.2023.00887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian trajectory prediction is an essential link to understanding human behavior. Recent work achieves state-of-the-art performance gained from hand-designed post-processing, e.g., clustering. However, this post-processing suffers from expensive inference time and neglects the probability that the predicted trajectory disturbs downstream safety decisions. In this paper, we present Trajectory Unified TRansformer, called TUTR, which unifies the trajectory prediction components, social interaction, and multimodal trajectory prediction, into a transformer encoder-decoder architecture to effectively remove the need for post-processing. Specifically, TUTR parses the relationships across various motion modes using an explicit global prediction and an implicit mode-level transformer encoder. Then, TUTR attends to the social interactions with neighbors by a social-level transformer decoder. Finally, a dual prediction forecasts diverse trajectories and corresponding probabilities in parallel without post-processing. TUTR achieves state-of-the-art accuracy performance and improvements in inference speed of about 10x - 40x compared to previous well-tuned state-of-the-art methods using post-processing.
引用
收藏
页码:9641 / 9650
页数:10
相关论文
共 50 条
[31]   Stochastic Sampling Simulation for Pedestrian Trajectory Prediction [J].
Anderson, Cyrus ;
Du, Xiaoxiao ;
Vasudevan, Ram ;
Johnson-Roberson, Matthew .
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, :4236-4243
[32]   Pedestrian Trajectory Prediction with Structured Memory Hierarchies [J].
Fernando, Tharindu ;
Denman, Simon ;
Sridharan, Sridha ;
Fookes, Clinton .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 :241-256
[33]   Social Interpretable Tree for Pedestrian Trajectory Prediction [J].
Shi, Liushuai ;
Wang, Le ;
Long, Chengjiang ;
Zhou, Sanping ;
Zheng, Fang ;
Zheng, Nanning ;
Hua, Gang .
THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, :2235-2243
[34]   Pedestrian Trajectory Prediction Using a Social Pyramid [J].
Xue, Hao ;
Huynh, Du Q. ;
Reynolds, Mark .
PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 :439-453
[35]   Pedestrian trajectory prediction with convolutional neural networks [J].
Zamboni, Simone ;
Kefato, Zekarias Tilahun ;
Girdzijauskas, Sarunas ;
Noren, Christoffer ;
Dal Col, Laura .
PATTERN RECOGNITION, 2022, 121
[36]   Anchor-based Multi-modal Transformer Network for Pedestrian Trajectory and Intention Prediction [J].
Lin, Yiwei ;
Hu, Chuan ;
Zhao, Baixuan ;
Jiang, Hao ;
Shan, Yonghang ;
Ding, Taojun ;
Zhang, Xi .
Proceedings of the 2023 7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023, 2023,
[37]   MGFormer: a multi-information-based GRU-transformer network for pedestrian trajectory prediction [J].
Liu, Quankai ;
Sang, Haifeng ;
Wang, Jinyu ;
Chen, Wangxing .
JOURNAL OF SUPERCOMPUTING, 2025, 81 (07)
[38]   End-to-End Pedestrian Trajectory Forecasting with Transformer Network [J].
Yao, Hai-Yan ;
Wan, Wang-Gen ;
Li, Xiang .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (01)
[39]   SPECTRUMNET: SPECTRUM-BASED TRAJECTORY ENCODE NEURAL NETWORK FOR PEDESTRIAN TRAJECTORY PREDICTION [J].
Liu, Shaohua ;
Zhu, Yinglong ;
Yao, Pengfei ;
Mao, Tianlu ;
Wang, Zhaoqi .
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, :7075-7079
[40]   Joint Intention and Trajectory Prediction Based on Transformer [J].
Sui, Ze ;
Zhou, Yue ;
Zhao, Xu ;
Chen, Ao ;
Ni, Yiyang .
IEEE International Conference on Intelligent Robots and Systems, 2021, :7082-7088