A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation

被引:4
作者
Jian, Muwei [1 ,2 ]
Chen, Hongyu [2 ]
Zhang, Zaiyong [3 ]
Yang, Nan [2 ]
Zhang, Haorang [1 ]
Ma, Lifu [4 ]
Xu, Wenjing [2 ]
Zhi, Huixiang [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Linyi Univ, Sch Informat Sci & Technol, Linyi 276005, Peoples R China
[3] Linyi Cent Hosp, Thorac Surg Dept, Linyi, Peoples R China
[4] Linyi Cent Hosp, Personnel Dept, Linyi, Peoples R China
基金
中国国家自然科学基金;
关键词
PULMONARY NODULES; AUTOMATIC DETECTION; IMAGES;
D O I
10.1038/s41597-024-03658-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools in clinical diagnostic workflows, significantly alleviating the burden on radiologists. Nevertheless, despite their integration into clinical settings, CAD systems encounter limitations. Specifically, while CAD systems can achieve high performance in the detection of lung nodules, they face challenges in accurately predicting multiple cancer types. This limitation can be attributed to the scarcity of publicly available datasets annotated with expert-level cancer type information. This research aims to bridge this gap by providing publicly accessible datasets and reliable tools for medical diagnosis, facilitating a finer categorization of different types of lung diseases so as to offer precise treatment recommendations. To achieve this objective, we curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients. The quality of the dataset was evaluated using a variety of classical classification and detection models, and these promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   An efficient U-Net framework for lung nodule detection using densely connected dilated convolutions [J].
Ali, Zeeshan ;
Irtaza, Aun ;
Maqsood, Muazzam .
JOURNAL OF SUPERCOMPUTING, 2022, 78 (02) :1602-1623
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
Cengil E, 2018, 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP)
[5]  
Dosovitskiy L., 2021, ICLR
[6]  
Duggan N, 2015, LECT NOTES COMPUT SC, V8932, P478, DOI 10.1007/978-3-319-14612-6_35
[7]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861]
[8]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[9]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[10]   CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading [J].
He, Along ;
Li, Tao ;
Li, Ning ;
Wang, Kai ;
Fu, Huazhu .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) :143-153