Optimization of value-added products using response surface methodology from the HDPE waste plastic by thermal cracking

被引:4
作者
Botla, Ganesh [1 ]
Barmavatu, Praveen [2 ]
Pohorely, Michael [3 ]
Jeremias, Michal [4 ]
Sikarwar, Vineet Singh [3 ,4 ]
机构
[1] Chaitanya Bharathi Inst Technol, Dept Chem Engn, Hyderabad 500075, Telangana, India
[2] Univ Tecnol Metropolitana, Fac Ingn, Dept Ingn Mecan, Av Jose Pedro Alessandri 1242, Santiago 7800003, Chile
[3] Univ Chem & Technol, Dept Power Engn, Tech 5, Prague 16628 6, Czech Republic
[4] Czech Acad Sci, Inst Plasma Phys, Slovankou 1782-3, Prague 18200, Czech Republic
关键词
Bentonite; HDPE; Optimization; Response surface methodology; Thermal cracking; Waste; -to; -Oil; HIGH-DENSITY POLYETHYLENE; CATALYTIC PYROLYSIS; PROCESS PARAMETERS; LIQUID PRODUCT; DEGRADATION; REACTOR; FUEL; TECHNOLOGIES; BIOMASS;
D O I
10.1016/j.tsep.2024.102514
中图分类号
O414.1 [热力学];
学科分类号
摘要
The current research aims at the thermal degradation of waste plastic in the presence of bentonite solid catalyst to produce value added products such as fuel oil, gas and charcoal. The thermal cracking of High-Density Polyethylene plastic produces the liquid fuel with conversion around 84.46 % with the characteristics: heating value 35.5 MJ/Kg, density 0.749 g/cc, viscosity 1.43cSt, a boiling point 200 degrees C and flash point 16 degrees C. The response surface methodology using the central composite design (CCD) method have been investigated to evaluate the effect of independent variables such as heating rate, temperature, time of operation on the production of value-added products. The optimal operating values for temperature, heating rate and batch time are 473.74 K, 24.9 degrees C/min and 159.90 min respectively. At the optimal operating conditions, the value-added products produced are fuel oil 91.16 %, gaseous products 8 % and solids 2 %. The experimental results were best fitted with quadratic polynomial model with the appreciable regression coefficient using the response surface method of analysis.
引用
收藏
页数:12
相关论文
共 46 条
  • [1] Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor
    Abbas-Abadi, Mehrdad Seifali
    Haghighi, Mehdi Nekoomanesh
    Yeganeh, Hamid
    [J]. FUEL PROCESSING TECHNOLOGY, 2013, 109 : 90 - 95
  • [2] Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics
    Aguado, Roberto
    Elordi, Gorka
    Arrizabalaga, Aritz
    Artetxe, Maite
    Bilbao, Javier
    Olazar, M.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2014, 254 : 357 - 364
  • [3] Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products
    Ahmad, Imtiaz
    Khan, M. Ismail
    Khan, Hizbullah
    Ishaq, M.
    Tariq, Razia
    Gul, Kashif
    Ahmad, Waqas
    [J]. INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (07) : 663 - 671
  • [4] Kinetic study of high density polyethylene (HDPE) pyrolysis
    Al-Salem, S. M.
    Lettieri, P.
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (12A) : 1599 - 1606
  • [5] Anjum M.Miandad., 2016, J SCI FOOD AGR, V1, P13
  • [6] Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines
    Budsaereechai, Supattra
    Hunt, Andrew J.
    Ngernyen, Yuvarat
    [J]. RSC ADVANCES, 2019, 9 (10): : 5844 - 5857
  • [7] Pyrolysis technologies for municipal solid waste: A review
    Chen, Dezhen
    Yin, Lijie
    Wang, Huan
    He, Pinjing
    [J]. WASTE MANAGEMENT, 2014, 34 (12) : 2466 - 2486
  • [8] PYROLYSIS OF POLYETHYLENE IN A FLUIDIZED-BED REACTOR
    CONESA, JA
    FONT, R
    MARCILLA, A
    GARCIA, AN
    [J]. ENERGY & FUELS, 1994, 8 (06) : 1238 - 1246
  • [9] Ding Y., 2013, Mach. Des. Manuf, V1, P20
  • [10] Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor
    Elordi, G.
    Olazar, M.
    Lopez, G.
    Amutio, M.
    Artetxe, M.
    Aguado, R.
    Bilbao, J.
    [J]. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 85 (1-2) : 345 - 351