Random Sub-Samples Generation for Self-Supervised Real Image Denoising

被引:5
|
作者
Pan, Yizhong [1 ]
Liu, Xiao [1 ]
Liao, Xiangyu [1 ]
Cao, Yuanzhouhan [2 ]
Ren, Chao [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Peoples R China
[2] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.01116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With sufficient paired training samples, the supervised deep learning methods have attracted much attention in image denoising because of their superior performance. However, it is still very challenging to widely utilize the supervised methods in real cases due to the lack of paired noisyclean images. Meanwhile, most self-supervised denoising methods are ineffective as well when applied to the real-world denoising tasks because of their strict assumptions in applications. For example, as a typical method for self-supervised denoising, the original blind spot network (BSN) assumes that the noise is pixel- wise independent, which is much different from the real cases. To solve this problem, we propose a novel self-supervised real image denoising framework named Sampling Difference As Perturbation (SDAP) based on Random Sub-samples Generation (RSG) with a cyclic sample difference loss. Specifically, we dig deeper into the properties of BSN to make it more suitable for real noise. Surprisingly, we find that adding an appropriate perturbation to the training images can effectively improve the performance of BSN. Further, we propose that the sampling difference can be considered as perturbation to achieve better results. Finally we propose a new BSN framework in combination with our RSG strategy. The results show that it significantly outperforms other state-of-the-art self-supervised denoising methods on real- world datasets. The code is available at https://github.com/p1y2z3/SDAP.
引用
收藏
页码:12116 / 12125
页数:10
相关论文
共 50 条
  • [1] Asymmetric Mask Scheme for Self-supervised Real Image Denoising
    Li, Xiangyu
    Zheng, Tianheng
    Zhong, Jiayu
    Zhang, Pingping
    Ren, Chao
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 199 - 215
  • [2] Investigating self-supervised image denoising with denaturation
    Waida, Hiroki
    Yamazaki, Kimihiro
    Tokuhisa, Atsushi
    Wada, Mutsuyo
    Wada, Yuichiro
    NEURAL NETWORKS, 2025, 184
  • [3] Leveraging Self-supervised Denoising for Image Segmentation
    Prakash, Mangal
    Buchholz, Tim-Oliver
    Lalit, Manan
    Tomancak, Pavel
    Jug, Florian
    Krull, Alexander
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 428 - 432
  • [4] Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising
    Li, Junyi
    Zhang, Zhilu
    Liu, Xiaoyu
    Feng, Chaoyu
    Wang, Xiaotao
    Lei, Lei
    Zuo, Wangmeng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9914 - 9924
  • [5] Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising
    Li, Junyi
    Zhang, Zhilu
    Liu, Xiaoyu
    Feng, Chaoyu
    Wang, Xiaotao
    Lei, Lei
    Zuo, Wangmeng
    Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2023, 2023-June : 9914 - 9924
  • [6] Complementary Blind-Spot Network for Self-Supervised Real Image Denoising
    Fan, Linwei
    Cui, Jin
    Li, Huiyu
    Yan, Xiaoyu
    Liu, Hui
    Zhang, Caiming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10107 - 10120
  • [7] Two-scale Real Image Blind Denoising with Self-supervised Constraints
    Wang D.
    Pan J.-S.
    Tang J.-H.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (06): : 2942 - 2958
  • [8] NIRN: Self-supervised noisy image reconstruction network for real-world image denoising
    Li, Xiaopeng
    Fan, Cien
    Zhao, Chen
    Zou, Lian
    Tian, Sheng
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16683 - 16700
  • [9] NIRN: Self-supervised noisy image reconstruction network for real-world image denoising
    Xiaopeng Li
    Cien Fan
    Chen Zhao
    Lian Zou
    Sheng Tian
    Applied Intelligence, 2022, 52 : 16683 - 16700
  • [10] Self-Supervised Denoising for Real Satellite Hyperspectral Imagery
    Qin, Jinchun
    Zhao, Hongrui
    Liu, Bing
    REMOTE SENSING, 2022, 14 (13)